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Abstract—In cloud computing systems, computation, commu-
nication, and memory resources are distributed across different
physical machines and can be used to execute computational
tasks requested by different users. It is challenging to charac-
terize the capacity of such a distributed system, because there
exist multiple types of resources and the amount of resources
required by different tasks is random. In this paper, we define
the capacity as the number of tasks that the system can support
with a given overload/outage probability. We derive theoretical
formulas for the capacity of distributed systems with multiple
resource types, where we consider the power of d choices as the
task scheduling strategy in the analysis. Our analytical results
describe the capacity of distributed computing systems, which
can be used for planning purposes or assisting the scheduling and
admission decisions of tasks to various resources in the system.
Simulation results using both synthetic and real-world data are
also presented to validate the capacity bounds.

Index Terms—Capacity, cloud computing, distributed systems,
multiple resource types, power of d choices, software defined
networking (SDN)

I. INTRODUCTION

Cloud computing allows flexible configuration of high-level
services and sharing of computer resources such as com-
putation, memory, and communication among users. These
resources as well as databases are often distributed and
connected over high-speed networks or the Internet. Big hi-
tech companies including Google, Amazon, and IBM have
various offers of cloud computing services and platforms,
similar to public utilities. From the system perspective, the
cloud-computing infrastructure corresponds to a distributed
computing network with different types of data servers and
communication resources inter-connected by communication
links. Another related notion is edge computing [1], [2], where
processing demands are also handled by resources distributed
over the communication network, although the emphasis of
edge computing is placed on pushing and carrying out the
computation close to the end users (i.e., the edge of the
infrastructure).
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Fig. 1. Distributed computing systems with multiple resource types.

As for communication networks, software defined network-
ing (SDN) [3], [4] has become an emerging architecture with
separated data and control planes. An SDN network can
consist of multiple interconnected domains (Fig. 1), operated
by a single or multiple owners. All control functionalities are
implemented on the control plane for operational decisions
such as flow-path construction and resource allocation, while
the data plane only passively carries out the instructions
received from the control plane. Due to the separated control
plane, SDN enables programmable network management,
easy network reconfiguration and on-demand resource allo-
cation, which can lead to significant improvement of network
performance and flexibility.

As pointed out in [5], the notions of cloud/edge computing
and SDN are not entirely separate. Indeed, the notion of SDN
has been extended beyond communication resources to in-
clude computing, storage, data, and other resources to support
the computation and communication demands. For example,
a set of resources of various types can be identified and
designated to support a service (application) or a collection
of services. Besides business and civilian applications, the
extended notion of SDN with multiple types of resources,
referred to as the Software Defined Coalition (SDC) in [6],
has also been investigated for defense applications, where a
SDC slice consists of a set of computation (servers), commu-
nication, and memory resources distributed across multiple
domains for executing given analytics tasks, as shown in
Fig. 1.

Independent of the civilian or defense nature of the ap-
plications, the extended SDN has distributed resources of
different types connected by the network. It is important to
quantify the “capacity” of a given set (slice) of resources
and identify how such distributed resources can be utilized



in an optimal way. Toward this goal, we define the capacity
as the maximum number of analytic tasks that the slice
of involved resources can process simultaneously. With the
resource capacity known, the system can admit and schedule
an appropriate number of tasks for processing. It is chal-
lenging to characterize the capacity of resource slice due to
random resource requirements of tasks and distributed nature
of resources.

In this paper, we derive analytical expressions for the
capacity of distributed systems with multiple resource types.
Because the exact capacity expression is very difficult to
obtain, we present an achievable lower bound and an upper
bound of capacity. Using simulations with both synthetic
task arrivals and real-world task arrival traces collected in
a data center, we will show that these capacity bounds can
closely approximate the actual capacity of the system when
parameters in the expression are properly tuned. As the system
capacity is related to the way different tasks are assigned to
machines, we consider the power of d choices (PODC) as the
task assignment strategy in this paper, which is widely used in
theoretical analysis and practical systems [7], [8]. The benefit
of PODC is that the tradeoff between system capacity and
resource control overhead is controllable as preferred, i.e., a
larger d gives a larger system capacity but also requires higher
control overhead.

The rest of this paper is organized as follows: Section II
reviews the related work. The system model and definition of
capacity are presented in Section III. The sufficient and nec-
essary conditions for capacity considering PODC assignment
are derived in Section IV. The numerical results are presented
in Section V, and Section VI concludes this paper.

II. RELATED WORK

The notion of effective capacity is widely explored in
wireless communications, which stems from the concept of
equivalent bandwidth [9]. In [10], [11], the maximum arrival
rate that a wireless link can support with a constrained
probability of delay violation is formulated as the effective
capacity, based on which the effective capacity of two-
hop wireless communication is derived in [12]. Caching is
considered for optimizing link capacity in [13], where content
replication jointly with routing of user content is optimized
to minimize required resources, i.e., maximize link capacity.
Compared to the above body of work, task assignment in
distributed computing systems is quite different from routing
in communication networks, since no pre-defined destination
exists for the tasks and the assignment of tasks to machines
depends on the task assignment strategy.

The task assignment process can be seen as a variant of the
balls-into-bins problem, where M balls (tasks) are allocated
into N bins (machines) and intend to achieve load balancing.
A general strategy for task assignment is PODC [7], where
d ≥ 2 machines1 are selected uniformly and randomly from
N machines for each task. The least-loaded one among the d
selected machines will be chosen to process the task.

1PODC can be generalized to d ≥ 1, we will consider PODC with d ≥ 1
later in this paper.

The effectiveness of PODC for load balancing with a
single resource type and identical tasks is well studied in the
literature, such as in [7]. Some work considers the case where
tasks have different resource requirements (weights) and the
load of a machine is defined as the sum weight of the tasks
allocated to it. In [14], the concept of majorisation is used
to investigate the relationship among load of machines while
assigning weighted tasks using PODC. Markov chain models
are used in [15] and [16] to derive the gap between the load of
the most loaded machine and the average load. All the above
work only considers a single resource type.

For work that considers multiple resource types, machines
with different capacities for different types of tasks are
considered in [17] and the blocking probability when using
PODC is analyzed. The vector scheduling problem is inves-
tigated in [18], where overload probability and the load of
the most heavily loaded machine are analyzed for PODC
strategy. However, only identical tasks with the same resource
requirement are considered.

To the best of our knowledge, the scenario where different
tasks can require different (random) amounts of resources, in
the case with multiple resource types, has not been studied
in the literature. The capacity notion in this scenario has not
been defined in existing literature either. In this paper, we fill
the gap by addressing these problems.

III. SYSTEM MODEL AND DEFINITIONS

We consider a system with multiple types of distributed
resources. There are N distributed machines, each has R
types of resources (e.g., computation, communication, and
memory). The available amount of type-r resource at machine
n is normalized to 1 for any n and r. There are T tasks
running on the machines in total. The requirement of task t
for resource type r is a random variable Xt,r ∈ [0, 1]. For
each resource type, we assume that the requirements of all
tasks for this type of resource (i.e., Xt,r,∀t) are independent
and identically distributed (i.i.d.), while different distributions
may apply to different resource types (i.e., the distribution of
Xt,r and Xt,r′ for r 6= r′ may be different).

In the system, each task is assigned to one machine that
provides resources for this task. Denote ρn,r as the amount
of currently utilized type-r resource at machine n, which is
equal to the total requirements for type-r resource of tasks
allocated to machine n. To facilitate the capacity analysis later,
let ρn := maxr ρn,r denote the maximum resource utilization
among all resources on machine n.

The task allocation follows PODC with d ≥ 1. When
a new task arrives, d ≥ 1 machines are randomly chosen
according to a uniform distribution. The task is assigned to
the machine with the minimum ρn, among the d selected
machines. During the task assignment process, information
on resource utilization is exchanged between the d randomly
selected machines and a controller, so that the controller
can determine which machine is the least-occupied, i.e., has
the smallest ρn. Different values of d have different control
overheads and abilities to balance workload, thus leading to
different numbers of tasks that the system can process.



Definition 1 (Capacity). We define the ε-capacity of a dis-
tributed computing system as the maximum number of tasks,
denoted by M , that the system can serve simultaneously, such
that the overload probability is not higher than ε (ε > 0), i.e.,

Pr

{
R⋃
r=1

(
N⋃
n=1

[ρn,r ≥ 1]

)}
≤ ε. (1)

We analyze this capacity in the next section.

IV. CAPACITY ANALYSIS

The goal of our capacity analysis is to obtain upper bounds
of M that serve as sufficient and necessary conditions of (1).
The sufficient and necessary conditions give lower and upper
bounds of capacity, respectively.

A. Preliminary Lemma

The following lemma is used for the approximation of
PODC in the derivation of sufficient and necessary conditions.

Lemma 1. For vector a = (a1, · · · , aN ) with an ≥ an+1 for
n ∈ {1, · · · , N − 1} and probability vector p = (p1, · · · , pN )
with pn ≤ pn+1 for i ∈ {1, · · · , N − 1} and

∑N
n=1 pn = 1,

define the weighted average of a as
∑N
n=1 pnan, then

N∑
n=1

pnan ≤ p̄
N∑
n=1

an,

where p̄ = 1/N is the mean of all elements in p.

Proof. Assume we have pi such that pi ≤ p̄ ≤ pi+1, the
difference between p̄

∑N
n=1 an and

∑N
n=1 pnan is

p̄

N∑
n=1

an −
N∑
n=1

pnan =

i∑
n=1

(p̄− pn) an −
N∑

n=i+1

(pn − p̄) an

≥
i∑

n=1

(p̄− pn) ai −
N∑

n=i+1

(pn − p̄) ai. (2)

Based on the fact that
∑N
n=1 p̄ =

∑N
n=1 pn, we have

i∑
n=1

(p̄− pn) =

N∑
n=i+1

(pn − p̄) . (3)

Applying (3) into (2) gives p̄
∑N
n=1 an −

∑N
n=1 pnan ≥ 0,

and the claim follows.

B. Markov chain

Define vector ρ (t) := (ρn (t) ,∀n), where ρn (t) :=
maxr ρn,r (t) is the maximum utilization among all resource
types at machine n, after the t-th task has been assigned.
The task assignment process defines a Markov chain over the
vector ρ (t) as follows:

1) Choose the machine i ∈ {1, · · · , N} for the newly
arriving t-th task according to PODC.

2) For all r = 1, 2, ..., R:
a) Sample Xt+1,r as the requirement of type-r re-

source of the t-th task, from a given probability
distribution.

b) Set ρn,r (t+ 1) = ρn,r (t) + Xt+1,r for n = i
(i.e., machine i is chosen for the t-th task) and
ρn,r (t+ 1) = ρn,r (t) for n 6= i.

We also define a probability vector p := (p1, · · · , pN ), where
pi denotes the probability that the new task t+ 1 is assigned
to the i-th most loaded machine in terms of {ρn (t) : ∀n}.
If we rank ρ (t) in a non-increasing order such that ρ1 (t) ≥
ρ2 (t) ≥ · · · ≥ ρN (t), we have p1 ≤ p2 ≤ · · · ≤ pN due to
the use of PODC strategy. Whenever the context is clear, we
write ρ, ρn and ρn,r instead of ρ (t), ρn (t) and ρn,r (t).

C. Sufficient Condition for (1)

We first provide the following lemma that serves as an
intermediate sufficient condition for further analysis.

Lemma 2. For any task assignment strategies, if
N∑
n=1

E
(
eθρn

)
≤ εeθ

R
(4)

for some θ > 0, then the overload probability less than ε in
(1) is guaranteed.

Proof. We note that E
(
eθρn

)
is the moment generating func-

tion (MGF) of ρn for θ > 0, Chernoff’s bound can be applied.
Thus, we have

Pr (ρn ≥ 1) ≤
E
(
eθρn

)
eθ

, θ > 0. (5)

Substituting (5) into (4) gives

R
∑N
n=1 Pr (ρn ≥ 1) ≤ ε.

Applying Boole’s inequality to the left side of above, we have

ε ≥ R
N∑
n=1

Pr (ρn ≥ 1) ≥
N∑
n=1

R∑
r=1

Pr (ρn,r ≥ 1)

≥ Pr

{
R⋃
r=1

(
N⋃
n=1

[ρn,r ≥ 1]

)}
.

Thus, the overload probability in (1) is confirmed.

Denote G (θ) := E
(
eθmaxr Xt,r

)
with θ > 0 for any task t

and resource type r as the MGF of maxrXt,r, which can be
calculated based on the probability density functions (PDFs)
of Xt,r for all r (recall that the PDFs of Xt,r for different t
values are the same, for some given r). Using Lemma 2, we
obtain the following sufficient condition for (1).

Theorem 1. For the PODC strategy with d ≥ 1, if the number
of tasks is less than or equal to

Tl :=
log ε

NR + θ

log (ωG (θ) +N − ω)− logN
, (6)

for some θ > 0 and 0 < ω ≤ 1, then the overload probability
in (1) is guaranteed.

Proof. We first define Φ (t) :=
∑N
n=1 e

θρn(t) and calculate
the mean Φ (t). Rank ρ (t) in the non-increasing order such



that p1 ≤ p2 ≤ · · · ≤ pN for task t+ 1. The mean increment
of Φ (t) can be calculated as follows:

E [Φ (t+ 1)− Φ (t) |ρ (t)]

= E

[
N∑
n=1

(
eθρn(t+1) − eθρn(t)

) ∣∣∣∣∣ρ (t)

]

≤
N∑
i=1

piE
[
eθ(ρi(t)+maxr Xt+1,r) − eθρi(t)

∣∣∣ρ (t)
]

(7)

= (G (θ)− 1)

N∑
i=1

pi

(
eθρi(t)

)
≤ ωG (θ)− ω

N
Φ (t) .

In the above, with probability pi a newly arrived task is
allocated to machine i, whose occupancy will increase by
Xt+1,r for each resource type r. The change of eθρn(t) on
other machines is 0, i.e., eθρn(t+1) − eθρn(t) = 0 for n 6= i,
which gives (7), where the inequality is because ρi(t+ 1) ≤
ρi (t) + maxrXt+1,r. Moreover, since

∑N
i=1

(
pie

θρi(t)
)

is a
weighted average of eθρi with higher weights for smaller ele-
ments and

∑N
i=1 pi = 1, we have

∑N
i=1

(
pie

θρi(t)
)
≤ Φ(t)/N

according to Lemma 1. This gives the last inequality for
ω = 1.

Because E [E (X|Y )] = E [X], from the above we have

E [Φ (t+ 1)− Φ (t)] = E [E [Φ (t+ 1)− Φ (t) |ρ (t)]]

≤ ωG (θ)− ω
N

E [Φ (t)] .

That is,

E [Φ (t+ 1)] ≤ ωG (θ) +N − ω
N

E [Φ (t)] .

For T tasks in total (T ≤ Tl), because E [Φ (0)] = Φ (0) =∑N
n=1 e

θ0 = N , we have

N∑
n=1

E
[
eθρn(T )

]
= E [Φ (Tl)] ≤ N

(
ωG (θ) +N − ω

N

)T
≤ N

(
ωG (θ) +N − ω

N

)Tl

=
εeθ

R

for some properly chosen ω, where the first equality is due
to the linearity of expectation, the last inequality is because
T ≤ Tl and ωG(θ)+N−ω

N ≥ 1 for ω = 1, and the last equality
is from the definition of Tl in (6). The above is equivalent to
(4) in Lemma 2, hence we have proved the theorem.

D. Necessary Condition for (1)

We first provide the following lemma that serves as an
intermediate necessary condition for further analysis.

Lemma 3. For any task assignment that satisfies (1) with
some given ε, we have

1

N

N∑
n=1

E
(
e−θρn

)
≥ 1− ε

eθ
(8)

for any θ > 0.

Proof. A necessary condition for (1) is

1

N

N∑
n=1

Pr (ρn ≥ 1) ≤ max
n

Pr (ρn ≥ 1) (9)

≤ Pr

{
R⋃
r=1

(
N⋃
n=1

[ρn,r ≥ 1]

)}
≤ ε.

Using Chernoff’s bound with θ > 0, we have

1− E
[
e−θρn

]
eθ ≤ Pr (ρn ≥ 1) . (10)

We then apply (10) to the left-hand side of (9).

Denote H(θ) := E
(
e−θminr Xt,r

)
with θ > 0 for any task t

and resource type r as the MGF (with negative parameter) of
minrXt,r, which can be obtained with the PDFs of Xm,r for
all r. Note that although we take the minimum of {Xm,r : ∀r}
here, ρn is still defined as the maximum of {ρn,r : ∀r} (see
Section III). We have the following result.

Theorem 2. For the PODC strategy with d ≥ 1 that satisfies
(1) with some given ε, the system capacity M satisfies

M ≤ Tu :=
log (1− ε)− θ

log (vH(θ) +N − v)− logN
(11)

for any θ > 0 and some v ≥ 1.

Proof. Define Ψn (t) := e−θρn(t) for machine n and rank
ρ (t) in non-increasing order such that p1 ≤ p2 ≤ · · · ≤ pN
for task t+ 1. The mean increment of Ψn (t) for machine n
is

E [Ψn (t+ 1)−Ψn (t) |ρ (t)]

≤ pne−θ(ρn(t)+minr Xt+1,r) + (1− pn) e−θρn(t) − e−θρn(t)

= (H(θ)− 1) pnΨn (t) .

Define Ψ (t) := 1
N

∑N
n=1 Ψn (t), we have

E [Ψ (t+ 1)−Ψ (t) |ρ (t)]

=
1

N

N∑
n=1

E [Ψn (t+ 1)−Ψn (t) |ρ (t)]

≤ 1

N

N∑
n=1

(H(θ)− 1) pnΨn (t) ≤ (H(θ)− 1)
v

N
Ψ (t) ,

where Lemma 1 is used in the last step by considering that
(H(θ)− 1) pn decreases with n (note that H(θ) − 1 < 0)
and Ψn (t) increases with n, hence the result holds for v = 1.
Using E [E (X|Y )] = E [X], we have

E [Ψ (t+ 1)] = E [E [Ψ (t+ 1)−Ψ (t) |ρ (t)]] + E [Ψ (t)]

≤
(

(H(θ)− 1)
v

N
+ 1
)
E [Ψ (t)] .

For M tasks in total, based on the above and using
E [Ψ (0)] =

∑N
n=1 e

−θ0/N = 1, we have(
vH(θ)+N−v

N

)M
≥E [Ψ(M)]=

1

N

N∑
n=1

E
[
e−θρn(M)

]
≥ 1−ε

eθ

where the equality is due to the linearity of expectation and
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the last inequality is from Lemma 3. Rearranging the above
to solve for M proves the theorem.

E. Discussion

The sufficient condition for (1) given by Theorem 1 rep-
resents a lower bound of capacity, because the system is
guaranteed to support less than or equal to Tl tasks with an
overload probability of ε, where we recall that the capacity
is defined as the maximum number of tasks the system can
support. The necessary condition for (1) given by Theorem 2
gives an upper bound of capacity. Hence, the actual capacity
M is bounded by Tl ≤ M ≤ Tu. We note that Theorems 1
and 2 always hold when ω = v = 1, but the parameters ω
and v can be tuned to obtain a tighter bound.

V. NUMERICAL RESULTS

We compare our analytical lower and upper bounds of
capacity with the actual capacity obtained from simulation,
where both Gaussian-distributed and real-world task resource
requirements are considered. The MGFs G(θ) and H(θ) are
computed numerically according to the distribution in each
case (the distribution is explained in further details below).
The parameter θ in the MGF used in the computation of
capacity bounds is also determined numerically via linear
search, where we choose θ that gives the largest lower bound
and smallest upper bound, so that the bound remains as tight
as possible. In all simulations, we fix ε = 0.01.

For simplicity, we use “simulation” to denote the simulated
capacity and “analytical” as the results of analytical bounds in
the figures presented in the following. We also use “Suf” and
“Nec” to denote the sufficient condition (lower bound) and the
necessary condition (upper bound) of capacity, respectively.

A. Performance of Gaussian Resource Requirements

We first consider a single resource type where the amount
of resource requested by each task follows a Gaussian dis-
tribution with parameters µ and σ2. Fixing µ = 0.05 and
σ = 0.01, Fig. 2 shows the capacity for different d in PODC,
when the number of machines varies. We see that d = N
performs the best and d = 2 outperforms d = 1 significantly,
which is consistent with known results [7]. Moreover, for
this case where ω = v = 1, the theoretical upper and lower
capacity bounds hold for all d values with 1 ≤ d ≤ N .

The parameters ω and v in the capacity bounds can be tuned
so that the theoretical bounds provide a better approximation
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TABLE I
VALUES OF w AND v FOR GAUSSIAN RESOURCE REQUIREMENTS

Parameter settings ω v
R = 1, µ = 0.1, σ = 0.01 0.28 1.33
R = 1, µ = 0.05, σ = 0.01 0.41 1.16
R = 1, µ = 0.05, σ = 0.005 0.41 1.14

R = 2, µ1 = µ2 = 0.05, σ1 = σ2 = 0.001 0.34 1.34
R = 2, µ1 = 0.05, σ1 = 0.01, µ2 = 0.01, σ2 = 0.004 0.28 2.84

for the actual capacity values. For example, we can find
the appropriate values of ω and v by minimizing the errors
between the simulation results and the analytical bounds when
the number of machines N ∈ {20, 40, 60, 80, 100} (a set of
settings with small number of machines) . The best ω and
v values found with this approach are shown in Table I, for
different resource requirement distributions, where we recall
that R denotes the number of resource types. We use these
tuned ω and v parameters in cases with much larger N in our
simulations presented next.

Fig. 3 shows the results with different values of µ and σ
for d = 2, where a lower value of mean (µ) and standard
deviation (σ) in the amount of resource required by each task
leads to a larger capacity (i.e., more tasks can be served), as
one would intuitively expect. The comparison of single and
multiple (two) resource types for d = 2 is shown in Fig. 4.
We can see that when there are multiple types of resources,
the capacity of is dominated by the resource type with larger
µ (i.e., the most heavily utilized resource). However, it is
uncertain whether multiple resource types will cause higher
or lower capacity compared to the case with a single resource
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Fig. 9. Performance and relative er-
rors of capacity bounds for real data
with tuned parameters ω and v.

type, when the maximum mean value is the same.
We also see that our analytical bounds are close to the

simulation results in Figs. 3 and 4. The relative errors
(defined as the difference between the simulated capacity
and analytical bounds, divided by the simulated capacity),
as shown in Fig. 5, are around 0.2 for sufficient conditions
(lower bounds) and below 0.1 for necessary conditions (upper
bounds). In addition, the analytical bounds can capture the
capacity differences when the parameters µ, σ, R, and N are
different.

B. Performance of Real-World Resource Requirements

The Google cluster dataset [19] captures the task request
dynamics in a real-world computing cluster. It includes
the requirements for CPU and memory resources of over
45, 000, 000 tasks. To predict the capacity of a distributed sys-
tem with such task resource requirements, we fit a Gaussian
mixture model (GMM) using the dataset and use the MGF
of this GMM. Figs. 6 and 7 show the results of GMM fitting
for CPU and memory resources respectively. We see that the
GMM closely captures the underlying data distribution.

Based on the fitted GMM, Figs. 8 and 9 show the per-
formance of the analytical bounds without or with parameter
tuning as well as the relative errors. In the case where ω
and v are tuned, their values are ω = 0.14, v = 2.42, where
the tuning follows the same approach as in Section V-A. The
comparison between different capacity results follow a similar
trend as in the Gaussian case in Section V-A.

VI. CONCLUSION

We have derived theoretical lower and upper bounds of
the capacity of distributed computing systems with multiple
resources types. The lower and upper bounds correspond
to the sufficient and necessary conditions for the overload

probability, respectively. The PODC task assignment strategy
has been considered, where the trade-off between control
overhead and system capacity can be adjusted using the
parameter d. The numerical results have shown that our
proposed capacity bounds can capture the key characteristics
of system capacity and the approximation error is reasonably
small. Our results in this paper are useful for describing the
capacity of distributed computing systems with multiple re-
source types, which can be used in system planning, analysis,
and resource allocation.
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