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Energy-Efficient Service Placement based on
Equivalent Bandwidth in Cell Zooming enabled

Mobile Edge Cloud Networks
Pengchao Han, Yejun Liu, Xu Zhang, Lei Guo

Abstract— Mobile edge computing is popular for providing
services with low latency and high privacy. It becomes more
powerful by leveraging the widely deployed Small cell Base
Stations (SBS) with zooming cells for energy-efficient service
placement. However, the literature ignores the joint optimization
of SBS power control and service placement. The Quality
of Services (QoS) guarantee is also challenging, taking into
account the component dependency and parallelization in multi-
component services and the resource slicing for separated service
deployment. Moreover, prior works assume the same amount of
allocated resources of links on a placed path for service edge
allocation, leading to the ossification of resource allocation and
inevitable resource fragments. Towards the above challenges,
this paper addresses the energy-efficient and flexible service
placement in cell zooming enabled Mobile Edge Cloud (MEC)
networks. The delay of multi-component services is constructed
depending on the allocated resource slice. Besides, the joint opti-
mization of service placement and SBS power control is formu-
lated and transformed into a Mixed Integer Linear Programming
(MILP). More importantly, the equivalent bandwidth for an
edge allocation is defined and analyzed to obtain flexible edge
placement with minimum resource cost. Leveraging the results of
MILP, an Energy-efficient Service placement algorithm based on
equivalent Bandwidth in Cell zooming enabled MEC networks
(ESBC) is proposed to improve the probability of successful
service placement with QoS guarantee by optimizing the delay
distribution among components and edges and reducing resource
fragments. Finally, simulation results validate the effectiveness of
the proposed methods.

Index Terms—Service placement, mobile edge cloud, cell zoom-
ing, energy-efficient, equivalent bandwidth.

I. INTRODUCTION

THE highly developed communication technology 5G [1],
[2] has enabled unprecedented Quality of Services (QoS)

guarantee on a diversity of services for the ever-increasing
number of users. Facing the emergence of new applications in
big data, the Internet of Things (IoT), Virtual Reality (VR),
and Augmented Reality (AR) [3], etc., resources in networks
have evolved from single communication resource to multi-
dimensional resources including communication, computation,
and memory. Cloud computing [4] has provided a new pattern
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for service provisioning where users can request services from
cloud servers instead of processing data locally, resulting in
higher efficiency of resources, simplified user devices, and
easier service deployment. However, the central cloud features
a long transmission distance and high service delay, which is
intolerable for real-time applications. Towards the challenge,
mobile edge computing [5], [6], [7] emerges thanks to the
ubiquitous Small cell Base Stations (SBS) in 5G, low-cost
computation servers, high-capacity storage devices, and popu-
lar Graphic Processing Units (GPU) [8], [9]. It is a promising
technique for future multi-component services and intelligent
applications, promoting the development of edge intelligence
in 6G [10], [11], [12], [13].

In Mobile Edge Cloud (MEC) networks, edge servers are
deployed beside SBSs to support services placed in close prox-
imity to users, stimulating the low-latency service provisioning
with high privacy. Each service in MEC networks character-
izes multiple interconnected components. Edges in services
specify the dependency among components. The resource-
limited edge servers work cooperatively to provide large-scale
multi-component services with QoS guarantee [14]. Besides,
all SBSs construct a Voronoi diagram in MEC networks to
achieve the full coverage of users. There is a high potential for
a flexible user-SBS association through optimizing the Voronoi
diagram via cell zooming i.e., adjusting the transmitting power
of SBSs to coordinate the coverage of cells. Furthermore,
exploiting different power states of SBSs, i.e., active and sleep,
for energy-efficient service placement is also promising for
developing MEC networks with enormous SBSs. The multi-
component service placement in cell zooming enabled MEC
networks features the joint optimization of SBS power control
and service placement, which is neglected in prior works.

The QoS guarantee of multi-component services is also
challenging due to each service’s component dependency and
parallelization. For a user, it is more practical to consider the
delay constraint for the whole service rather than specifying
the delay request of every component and edge. As a result,
the delay distribution among the components and edges of
a service is reconfigurable, leading to new difficulties and
opportunities for successful service placement. Moreover, the
heterogeneity of physical resources, e.g., SBSs with different
transmitting powers and data rates and edge servers with
diverse computation capacities, poses challenges for service
placement. Specifically, works in the literature specify that
all links on the placed path of a service edge allocate the
same amount of resources to the edge. It leads to a high
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probability of failed edge placement caused by bottleneck
links and inevitable resource fragments. Thus, flexible resource
allocation mechanisms are necessary.

Towards the above challenges, this paper aims to address
the multi-component service placement problem in cell zoom-
ing enabled MEC networks. We mainly make the following
contributions.
a) We mathematically formulate the delay of multi-component

services considering allocating separated resource slices for
each user;

b) The joint optimization of service placement and SBS power
control in MEC networks is formulated as a Mixed Integer
Non-Linear Programming (MINLP) and transformed into
a Mixed Integer Linear Programming (MILP) through
uniform delay splitting;

c) For the first time, we define the equivalent bandwidth for
an edge placement to support flexible and diverse resource
allocation of links on a placed path. Theoretically, we prove
that the minimum resource consumption can be achieved
in the principle of equivalent bandwidth;

d) We propose the Energy-efficient Service placement algo-
rithm based on equivalent Bandwidth in Cell zooming en-
abled MEC networks (ESBC) to reduce resource fragments,
improve service acceptance ratio, and guarantee the QoS
of users. Iterative delay splitting and resource allocation
are applied, taking the reconfigurable delay distribution of
each service into account.

The remainder of this paper is organized as follows. The
related works are reviewed in Section II. Section III presents
the system models, including SBS power model and service
delay. Then, the problem of multi-component service place-
ment in cell zooming enabled MEC networks is formulated.
The problem is transformed into a MILP in Section IV to
achieve the joint optimization of SBS power control and
service placement. The equivalent bandwidth is defined for
service edges, based on which the edge allocation based on
equivalent bandwidth and the ESBC algorithm is proposed in
Section V. The simulation results are presented in Section VI.
Finally, Section VII concludes this paper.

II. RELATED WORKS

To satisfy the emerging high-QoS applications and ever-
increasing traffic demand for mobile communication systems,
the next-generation 5G networks have evolved into a hetero-
geneous structure., i.e., 5G HetNet [15]. Various SBSs, e.g.,
femtocell BS, microcell BS, and picocell BS [16], coexist
with Macrocell BS (MBS), posing new challenges to efficient
resource allocation [15]. Optimizing the Voronoi diagram of
SBSs has been investigated for supporting traditional commu-
nication traffics. The game theory [17] is utilized for construct-
ing the Voronoi diagram of SBSs for serving mobile users. The
constraint of outage probability [18] and the wireless energy
harvesting [19], [20] are also considered for optimizing the
power of zooming small cells.

Related works save energy through dynamic power control
for providing traditional unsplittable services, i.e., services
with only one component [21], to mobile users in MEC

networks. Authors in [22] have optimized the power allocation
in non-orthogonal multiple access (NOMA) based wireless
networks to guarantee the QoS of users and improve the
spectrum efficiency. Cell zooming is an effective technique to
ensure the continuity of service provisioning while users move
among multiple cells [23], especially for MEC networks with
massive and large-scale deployed devices [24]. When a user
moves out of the coverage of the current serving SBS, there are
two ways to ensure the QoS of the user: (a) the SBS increases
the transmitting power to enlarge its coverage, and (b) another
SBS is selected to serve the user. Given the distribution of
users, it is also promising to save energy by gathering users
into several SBSs through cell zooming. For the service provi-
sioning in cell zooming enabled MEC networks, prior works
have optimized the infrastructure cost with the constrained
probability of QoS violation [25]. The power state of SBSs has
also been investigated for energy consumption minimization
while guaranteeing the delay constraint of users [26]. However,
they have considered only the active and sleep states of SBSs
with fixed coverage.

Formulating the delay of multi-component services [27],
[28], [29] with online tasks is essential for designing QoS-
guaranteed service placement mechanisms. Considering only
processing and/or propagation delay for services [30], [31],
[32], [33], [34], [35], [36], [37] is not practically enough as
tasks of a service arrive randomly, leading to non-negligible
queuing delay. The M/M/1 [38][39][40] and M/G/1 [41][42]
queuing systems play important roles in the queuing delay
formulation for tasks that arrive according to Poisson distri-
bution and be served with different processes [43]. Besides,
the delay of a multi-component service should take the service
architecture, component dependency [44], [45], [46], [27], and
allocated resources into account [14]. The resource sharing
mechanism is also not trivial. Traditional resource sharing
mechanism is considered in [14], where all services that are
placed on the same infrastructure, i.e., edge servers or wireless
links, are put into a common queue. Therefore, there exists
interference [29] among services in queuing delay. However,
the new resource slicing mechanism based on network vir-
tualization [47], [48] allows reserving different resources for
different services. Tasks of each service are queued separately.
Thus, the interference among services is avoided.

The equivalent bandwidth for a wireless link is initially de-
fined as the maximum available arrival rate of data packets that
the link can support under the constraint of delay satisfaction
rate [49]. The equivalent bandwidth of a two-hop wireless path
has also been investigated [50]. In this paper, we define the
equivalent bandwidth for an edge in a service to facilitate the
edge allocation on a multi-hop physical path and ensure the
delay constraint of the edge is guaranteed.

There are mainly three-category approaches for multi-
component service placement, i.e., two-stage approach, one-
stage approach, and meta-heuristic algorithm. The two-stage
service placement first assigns all the components in a service
and then finds routing paths for all edges. The components can
be placed according to different rules. For example, assigning
components to edge servers with higher general resource
capacity in priority [51] results in better load balancing of
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edge servers. While leveraging Page rank for component
assignment [52] takes the connectivity of a service graph into
account, which benefits the edge routing in the second stage.
Unlike two-stage approaches, the one-stage service placement
assigns components and edges simultaneously. To be specific,
a component is assigned together with all the edges that are
linked to the component [53]. Last but not least, the meta-
heuristic algorithms such as Ant Colony Optimization (ACO)
[14] searches the near-optimal service placement results in
an iterative exploration and exploitation way. To the best of
our knowledge, the multi-component service placement in the
cell zooming enabled MEC networks for energy efficiency
optimization has not been addressed in the literature. The
potential of utilizing the equivalent bandwidth for flexible
resource allocation and resource fragment reduction is also
neglected.

III. SYSTEM MODELS AND PROBLEM FORMULATION

A. MEC networks

The MEC networks contain multiple MBSs and SBSs that
follow homogeneous Poisson Point Process (PPP) distribution
[40] as shown in Fig. 1. Each MBS acts as the controller
responsible for transmitting control signals for resource allo-
cation and management of SBSs located within its coverage.
SBSs are equipped with multiple transceivers to communicate
with each other via wireless channels. The data transmission
between MBS and SBSs uses the traditional microwave com-
munication in 4G/Long Term Evolution (LTE). SBSs use the
millimeter wave to communicate with users and other SBSs
to achieve a high data rate. Each SBS is connected to a co-
located edge server with negligible communication delay. We
use edge nodes to represent both SBSs and edge servers for
ease of presentation when it is clear from the context.

Table I shows the notations used in this paper. Let N and L
denote the set of edge nodes and wireless links, respectively.
The node set N = NM ∪ NS ∪ NU consists of MBSs in
NM , SBSs in N S , and user devices in NU . The computation
capacity of the node indexed by n ∈ N S is represented by
Cn CPU cycles/s. Similarly, denote L = LM ∪ LS ∪ LU the
set of links, where LM , LS , and LU indicate the sets of links
between MSBs and SBSs, links among SBSs, and links from
SBSs to users respectively. The data rate of link l ∈ L is given
by Rl.

TABLE I: Notations

Symbol(s) Description
N = NM ∪
NS ∪NU

Set of edge nodes where NM , NS , and NU denote
the sets of MBSs, SBSs, and users respectively

L = LM ∪
LS ∪ LU

Set of wireless links where LM , LS , and LU denote
the sets of links between MBSs and SBSs, links among

SBSs, and links from SBSs to users respectively
Cn The computation capacity of node n ∈ NS

H The bandwidth of wireless links l ∈ LS ∪ LU
N0 The power density of white noise
Gl The channel gain of wireless link l ∈ LS ∪ LU
Rl The data rate of wireless link l ∈ L
α The constant path loss factor of wireless links
β The path loss multiplier of wireless links
ϕl Transmitting distance of wireless link l ∈ L
pTmax The maximum transmitting power of SBSs
pA The static power of an active SBS
pTl The transmitting power of wireless link l ∈ L
pC The power for processing per CPU cycle
pS The power of a sleep SBS
ρl The load factor of wireless link l, ρl ∈ [0, 1]
ρn The load factor of edge server n, ρn ∈ [0, 1]
In Set of links that flow into node n
On Set of links that flow out of node n
F The average packet size
X2 The expected second moment of service time of packets
Q A very big value
fl The residual bandwidth capacity of wireless link l
gn The residual computation resource of edge server n
K Set of services
Kn Set of services of user n ∈ NU

Gk =
{Vk, Ek}

The task graph of the service indexed by k, where Vk
and Ek are sets of components and edges respectively

uk The user that requests Gk

ηk The arrival rate of Gk

dk The delay request of Gk

Tk The duration of Gk

ck,i The computation resource request of component i ∈ Vk
bk,j The data size to be transmitted on edge j ∈ Ek
χk,m The mth branch of Gk

wk,i The expected queuing time of computation units on
component i ∈ Vk

wk,j,l The expected queuing time of data packets on j ∈ Ek
τVk,i The delay of component i ∈ Vk
τEk,j The delay of edge j ∈ Ek
τBm The delay of branch m ∈ Gk

jS The source component of edge j ∈ Ek
jD The destination component of edge j ∈ Ek
ψk,z The weighted height of z ∈ Vk or z ∈ Ek
ςk,m The weighted length of branch m ∈ Gk

Yk,j The placed path of edge j ∈ Ek
|Yk,j | The path length of Yk,j
dk,z The assigned delay constraint of z ∈ Vk or z ∈ Ek
v̂k,i The resource request of component i ∈ Vk based on

the delay constraint dk,i
ζ̂k,j The resource request of edge j ∈ Ek based on the delay

constraint dk,j
ak,i,n Binary variable, taking 1 if component i ∈ Vk is placed

to edge server n ∈ NS and 0 otherwise
φk,j,l Binary variable, taking 1 if edge j ∈ Ek is placed to a

path that contains the wireless link l ∈ LS ∪ LU and 0
otherwise

vk,i,n The amount of computation resource that edge server
n ∈ NS allocates to component i ∈ Vk

ζk,j,l The amount of communication resource that wireless
link l ∈ LS ∪ LU allocates to edge j ∈ Ek

σk Binary variable, taking 1 if service k ∈ K is placed
successfully and 0 otherwise

δn Binary variable, taking 1 if SBS n ∈ NS is in active
state, and 0 for sleep state
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B. Multi-component services

1) Service graph: The set of services is denoted by K.
Any service k ∈ K can be described using a call graph
Gk = {Vk, Ek} , where Vk and Ek are the set of components
and edges, respectively. Each service Gk contains multiple
homogeneous tasks with the arrival rate of ηk in a duration of
Tk. Each edge in a service specifies the dependency between
its start and end components. We assume the first and last
components (which are the same component) in any service,
e.g., data pre-processing and results demonstration, should be
executed locally in a user device uk ∈ NU . The computation
resource request of the ith component in Vk is ck,i in the unit
of CPU cycle, and the data size to be transmitted on the edge
indexed by j is denoted by bk,j bits. Note that the data size for
the upstream and downstream transmissions of a bidirectional
edge in a service can be asymmetric.

2) Service tree: Any call graph of a service can be orga-
nized using a service tree [54]. We can transform a service
graph into a service tree by merging all the predecessor
components of any component. The resource requests of the
merged component and the related edges are determined by
adding up all the resource requests of the predecessor com-
ponents/input edges. For example in Fig. 2 where the original
service graph contains 5 components indexed by {1, · · · , 5},
the component 5 has two predecessor components, i.e., 3
and 4, which are expected to be merged as 3′. The directed
edges indicate the dependency between components, and the
transmitted data size is marked beside the corresponding
edge with b1, b2, and b3. Note that the processing results
of components should be returned according to the reverse
direction of the edges. There are three cases considering the
relationships among the predecessor components, resulting in
different merging results:

a) When the predecessor components of the target component
are dependent, as shown in Fig. 2 (a) where compo-
nent 4 requires the output of component 3, merging the
predecessor components saves the resource of the inter-
connected edges between the predecessors, i.e., b1 for the
edge < 3− 4 >.
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Fig. 3: SBS states and Voronoi diagram. Left: original distribution of SBSs;
Right: Voronio diagram of SBSs considering cell zooming and SBS sleeping

b) When the predecessors of the target component have differ-
ent predecessors, as shown in Fig. 2 (b) where components
3 and 4 depend respectively on components 1 and 2,
merging the predecessor components gives the same total
resource request as before.

c) When the predecessors of the target component have the
same predecessor, as shown in Fig. 2 (c) where both com-
ponents 3 and 4 depend on component 1, the transmitted
data size from component 1 to the merged component 3′

equals the output of component 1. Thus, the communica-
tion resource for transmitting multiple copies of the output
of component 1 (to components 3 and 4) is avoided.

Overall, the benefits of converting service graphs to service
trees are twofold. First, we can save the communication
resources for placing services by avoiding redundant data
transmission. More importantly, organizing services with trees
allows for efficient service placement algorithms as presented
in Sections IV and V.

Therefore, we can model any service k ∈ K as Gk =
{χk,m,∀m} where χk,m indicates the mth branch in Gk.
Branches of a service Gk have the following properties,

a) The root of the tree corresponds to the input and the output
of a service, i.e., the first and last components, which
should be processed locally;

b) Each branch in Gk contains a set of continuous components
and edges, constructing a path from the root of Gk to one
of its leaf components. All components in a branch should
be executed in sequence;

c) The number of branches of a service equals the number of
leaf components in the service tree;

d) Different components on different branches can be exe-
cuted in parallel.

3) The delay of services: The delay request of Gk is dk,
constraining the total time for completing all components in
the service. Taking the service tree (for the kth service without
loss of generality) in Fig. 1 for example where the number
and arrow beside an edge between two components indicate
the index and two directions of the edge. Let τVk,i, τ

E
k,j , and

τBk,m denote the delay of component i, edge j, and branch
m respectively. There are three branches in the service, that
is, χk,1 = {v1 ↔ v2}, χk,2 = {v1 ↔ v3 ↔ v4} and χk,3 =
{v1 ↔ v3 ↔ v5} with respective delay of τBk,1 = τVk,1+ τ

E
k,1+

τEk,2+τ
V
k,2, τBk,2 = τVk,1+τ

E
k,3+τ

E
k,4+τ

V
k,3+τ

E
k,5+τ

E
k,6+τ

V
k,4 and

τBk,3 = τVk,1+τ
E
k,3+τ

E
k,4+τ

V
k,3+τ

E
k,7+τ

E
k,8+τ

V
k,5. Thus, the delay

of a service Gk is equivalent to the largest accumulated delay
of branches on Gk, i.e., max

{
τBk,1, τ

B
k,2, τ

B
k,3

}
. The delay

constraint of the service Gk is max
{
τBk,1, τ

B
k,2, τ

B
k,3

}
≤ dk.
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C. Power models

The MBSs are always powered on for controlling SBSs.
Each SBS has two power states: active and sleep. An active
SBS is capable of transmitting/receiving data to/from other
SBSs and users within its coverage. According to Shannon’s
formula, the transmitting power of a wireless link indexed by
l is

pTl =
HN0

Gl ·
(
2Rl/H − 1

) , (1)

where H denotes the spectrum width, N0 indicates the power
density of white noise, and Gl is the channel gain, which is
related with path-loss factor α, path-loss exponent β and the
link transmission distance ϕl as shown in Eq. (2).

Gl = α+ β log ϕl. (2)

The power of an active SBS n ∈ NS is composed of the
static power pA and the load dependent transmitting power
of its transceivers. When a SBS n ∈ NS is zero loaded, it
can be switched into sleep state with the power of pS . The
power amplifier, radio frequency transceivers, and most of
hardwares will be turned off for a sleep SBS to reduce power
consumption. Let δn be the power state of SBS n, i.e., there
are δn = 1 for an active SBS and δn = 0 for a sleep SBS, the
total power of a SBS is

pn = δn ·

(
pA +

∑
l∈LU∩On

pTl +
∑

l∈LS∩On

(
ρlp

T
max

)
+ρnCnp

C
)
+ (1− δn) p

S ,

(3)

where On indicates the set of links that flow out of SBS n, ρn
and pC are the load factor of node n and the power consump-
tion per CPU cycle, respectively. The maximum transmitting
power of a transmitter on a SBS is represented by pTmax and
ρl is the load factor of link l.

Fig. 3 demonstrates the power states and Voronoi diagram
of SBSs. The blue and black triangles indicate the active and
sleep SBSs, respectively, and the small black squares represent
users. On the left-hand side of Fig. 3, each SBS has a hexagon-
shaped coverage, guaranteeing the full coverage of the whole
area. Each user gets access to the nearest SBS by default,
shown in red lines. SBSs that do not serve any user are
switched into sleep state. However, the Voronoi diagram can
be optimized not only by adjusting the transmitting power of
SBSs, i.e., cell zooming, but also by controlling the power
states of SBSs, as shown in the right-hand side of Fig. 3.
More SBSs are in sleep state by gathering users to several
SBSs. In this process, we can guarantee the delay requests of
users by using the appropriate transmitting power of SBSs. As
a result, we can save more energy.

D. Delay models

The processing units of computation and communication
resources are a CPU cycle and a data packet, respectively.
Computation (communication) units of each service on an (a)
edge server (wireless link) are put into a separate queue and
be executed according to First-In-First-Out (FIFO) as shown
in Fig. 4 such that there is no interference among services.

Waiting 
queue

Process 
node

Tasks 
arrive

Tasks 
leave

Service 1Service 2Service 3

Fig. 4: Queue model of edge servers and wireless links

t

123
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Processing time
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Fig. 5: Delay of a component

We decouple the placement of components and edges into
two sets of variables for binary assignment indicators and con-
tinuous resource allocation, respectively. Specifically, let ak,i,n
be the binary variable of component assignment, indicating if
component i in service k is placed onto the edge node n or
not. Similarly, φk,j,l is the binary variable for edge assignment,
taking 1 if edge j in service k traverses wireless link l and 0
otherwise. Moreover, denote υk,i,n the amount of computation
resources that node n allocates to the component i in service k.
ζk,j,l represents the amount the bandwidth that link l allocates
to the edge j in service k. Let a, φ , υ and ζ be the set of
ak,i,n, φk,j,l, υk,i,n and ζk,j,l respectively.

1) Delay of service components: According to the Little’s
formula for M/M/1 queuing system [40], for component i in
service k with allocated resource υk,i,n from edge server n, the
expected queuing delay of computation units on component i
in Gk is

wk,i =
1

υk,i,n − ck,iηk
,∃ak,i,n = 1. (4)

The delay of a component i in service k includes the
expected queuing delay and the processing delay, i.e.,

τVk,i =
∑

n∈NS∪NU

ak,i,n

(
wk,i +

ck,i
vk,i,n

)
. (5)

2) Delay of service edges: For service edges, the packet
arrival process follows Poisson distribution and the packet
processing follows any distribution. According to Pollaczek-
Khinchin (P-K) formula of M/G/1 queuing system [55], the
expected queuing delay of data packets on edge j in service
k with allocated bandwidth ζk,j,l from link l ∈ LS ∪ LU is

wk,j,l =
bk,jηkX2/F

2 (1− bk,jηk/ζk,j,l)
,∃φk,j,l = 1, (6)

where F is the average packet size and X2 denotes the second
moment of service time for data packets.

The delay of any edge j in Gk includes the expected packet
queuing delay and the data transmitting delay of all links on
the placed path of the edge, that is,

τEk,j =
∑

l∈LS∪LU

φk,j,l

(
wk,j,l+

bk,j
ζk,j,l

)
. (7)
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It should be noted that wk,i represents the expected queuing
delay of computation units whose arrival process follows the
Poisson distribution. However, a service component contains
multiple computation units to process. The delay of a com-
ponent τVk,i is the duration from the time when the first
computation unit arrives to the time when the last computation
unit leaves. Considering that all the computation units arrive
almost at the same time, the waiting time and processing time
of computation units overlap with each other, as shown in
Fig. 5. Thus, the component delay is the sum of the expected
waiting time of a computation unit and the total processing
time of all the computation units of the component, which is
given by

τ̃Vk,i =
∑

n∈NS∪NU

ak,i,n

(
wk,i −

1

vk,i,n
+

ck,i
vk,i,n

)
. (8)

We omit the middle term in the above parentheses, i.e., the
processing time of one computation unit, as each compo-
nent generally contains several Megacyles (i.e., ck,i >> 1).
Therefore, we obtain (5). Similarly, the data transmitted on a
service edge contains multiple data packets. The total delay
of a service edge is formulated as (7).

E. Problem formulation

The objective of service placement is to minimize the
total power consumption while accepting as many services
as possible defined as

P (a,υ,φ, ζ) =
∑

n∈NS

pn −Q
∑
k∈K

σk

=
∑

n∈NS

[
δn ·

(
pA +

∑
l∈LU∩On

pTl

+
∑

l∈LS∩On

∑
k∈K,j∈Ek

φk,j,lζk,j,l

Rl
· pTmax

+
∑

k∈K,i∈Vk

ak,i,nυk,i,n · pC
)

+ (1− δn) p
S

]
−
∑
k∈K

Qσk.

(9)

where Q is a big value to facilitate accepting more service
requests, in case no service is accepted gives the minimum
power consumption.

The problem of service placement is formulated as P1.
P1 :

min P (a,υ,φ, ζ) . (10)

s.t.
ak,i,uk

= σk,∀k ∈ Kn, i ∈ Vk, i = 0, (11)∑
n∈NS

ak,i,n = σk,∀k ∈ K, i ∈ Vk, i ̸= 0, (12)

∑
l∈In

φk,j,l −
∑

l∈On

φk,j,l = −ak,jS ,n + ak,jD,n,

∀k ∈ K, j ∈ Ek, n ∈ NS ∪NU ,
(13)

∑
l∈In

φk,j,l ≤ σk,∀k ∈ K, j ∈ Ek, n ∈ NS ∪NU , (14)

∑
l∈On

φk,j,l ≤ σk,∀k ∈ K, j ∈ Ek, n ∈ NS ∪NU , (15)

φk,j,l = φk,j′,l, if jS = j′D and jD = j′D, (16)

Cn −
∑

k∈K,i∈Vk

vk,i,n ≥ 0,∀n ∈ NS , (17)

Rl −
∑

k∈K,j∈Ek

ζk,j,l ≥ 0,∀l ∈ LS , (18)

δn ≥ ak,i,n,∀k ∈ K, i ∈ Vk, n ∈ NS , (19)

δn ≥ φk,j,l,∀k ∈ K, j ∈ Ek, n ∈ NS , l ∈ On, (20)

pTl ≥
∑

k∈K,j∈Ek

φk,j,l

∑
k∈K,j∈Ek

HN0

(α+β log ϕl)(2ζk,j,l/H−1)
,

∀l ∈ LU ,
(21)

0 ≤
∑

l∈LU∩On

pTl ≤ pTmax,∀n ∈ NS , (22)

max

{ ∑
i,j∈χk,m

(
τVk,i + τEk,j

)
,∀χk,m ∈ Gk

}
≤ dk,∀k ∈ K,

(23)
ak,i,n = {0, 1} ,∀k ∈ K, i ∈ Vk, n ∈ NS ∪NU , (24)

φk,j,l = {0, 1} ,∀k ∈ K, j ∈ Ek, l ∈ LS ∪ LU , (25)

σk = {0, 1} ,∀k ∈ K, (26)

δn = {0, 1} ,∀n ∈ NS , (27)

vk,i,n ≥ 0,∀k ∈ K, i ∈ Vk, n ∈ NS ∪NU , (28)

ζk,j,l ≥ 0,∀k ∈ K, j ∈ Ek, l ∈ LS ∪ LU . (29)

Solving the problem P1 is equivalent to finding the place-
ment results of components (i.e., variables a and υ) and edges
(i.e., variables φ and ζ) with the minimum power consumption
and the maximum placed services. Processing the first (also the
last) component locally is specified in (11) where Kn denotes
the set of local services of edge node n ∈ NU . Constraint (12)
specifies that every component in a service should be assigned
to one and only one edge node. The flow conservation in (13)
aims to assign each edge in a service to a continuous and loop-
free physical path between the placed edge nodes of its start
and end components. Constraints (14) and (15) specify that
the edge assignment is not splittable, namely one edge to one
physical path. Constraint (16) indicates that each bidirectional
edge should be placed to the same path in different directions.
The computation and bandwidth resource capacity constraints
of edge server and wireless links among SBSs are formulated
in (17) and (18) respectively. Any SBS that carries services
should be in active state as described in (19) and (20). The
transmitting power of wireless link l from a SBS to a user
is formulated in (21) and the maximum transmitting power
constraint is specified in (22). The delay constraints of services
are shown in (23), restricting the delay of each branch to be
lower than dk. All placement variables are constrained to be
binary as in (24) and (25). The service placement indicators
σk,∀k ∈ K and SBS power state variables δn,∀n ∈ NS

are also binary as in (26) and (27). The resource allocation
variables are positive as in (28) and (29).

Based on the problem P1, there are possibilities to reduce
the total power consumption by adjusting the transmitting
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power of wireless links from SBSs to users in (21) through
optimizing the placement of services. We can save energy by
allowing as many as SBSs to switch into sleep state.

IV. ENERGY-EFFICIENT SERVICE PLACEMENT BASED ON
CELL ZOOMING

The problem P1 is a Mixed Integer Non-Linear Program-
ming (MINLP) due to the power and delay constraints (21)
and (23), which is hard to be solved within exponential time.
Thus, we transform the problem P1 to be a Mixed Integer
Linear Programming (MILP) through delay splitting. Lots of
existing methods, e.g., branch and bound can be applied to
a MILP to find the optimal solution. To be specific, we first
decouple the constraint (23) through delay splitting and then
reformulate the problem P1 with computed resource requests
v̂k,i and ζ̂k,j ,∀k ∈ K, i ∈ Vk, j ∈ Ek that satisfy the delay
constraints.

A. Delay splitting

1) Uniform delay splitting: Multiple online tasks can be
executed in parallel for each service to improve resource
efficiency and reduce delay. Namely, components in different
tasks of a service can be processed simultaneously as different
components are allocated with separated resource slices. It
is plausible to improve resource utilization by maximizing
the probability of task parallelization. It happens when the
delay of different components and edges are the same, i.e.,
uniform delay splitting, as shown in Fig. 6. The service has
three components connected with two edges, and there are
three online tasks for the service. Note that all tasks of the
service have the same request architecture as the service tree.
Assume that components 1 and 2 are placed to edge server 1,
and component 3 is assigned to edge server 2. In Fig. 6 (a),
all the components have the same length in terms of time, that

is, uniform delay splitting. While different components have
different delay in Fig. 6 (b). Online tasks that are assigned
to different edge servers can be processed in parallel, e.g.,
component 3 of the first (white) task and component 1 of the
second (purple) task are processed simultaneously on edge
servers 2 and 1, respectively. It can be obtained that even
though different delay splitting mechanisms have the same
service delay, the uniform splitting allows a higher degree of
parallelization among tasks. Thus, higher resource utilization
can be achieved.

2) Weighted heights of components and edges: The total
delay constraint is averagely distributed among all elements,
i.e., components and edges, on a branch for uniform delay
splitting. The allocated delay of an edge is weighted by the
placed path length of the edge. We define a weighted height
ψk,z for each component and edge z of a service to facilitate
uniform delay splitting. For example in Fig. 7, the service
has six components (i.e., the squares). The first number in
the parentheses beside each edge indicates the path length
|Yk,j | that the edge j ∈ Ek is placed. The weighted height
of any component or edge is shown in blue. The height of the
root component is 0 by default. Bi-directional edges share the
same weighted height, which equals the weighted height of its
father component plus 1. The weighted height of a component
considers the placed path length of two directional edges
between the component and its father. Thus, the weighted
height of component 2 is 1+2*2=5. For component 3, its
weighted height is 6+2*2=10.

Algorithm 1 shows the computation of weighted heights
of components and edges in a service. The procedure As-
sign Height() aims to assign the element z, i.e., either a
component or an edge, with weighted height h. It is called
recursively according of depth-first traversal of the service tree
(lines 10 and 16). The weighted heights of bidirectional edges
are same (line 14). The Algorithm 1 can also be used for the
weighted height computation given partial placement decision
α and φ to facilitate delay re-spitting. When the resource
allocation of some components and edges has been completed,
i.e., vk,i,n > 0,∃ak,i,n = 1 and ζk,j,l > 0,∃φk,j,l = 1 for
some i ∈ Vk, j ∈ Ek, the actual delay of these components
and edges is subtracted from the total delay. The residual
delay is split among all elements whose resource allocation
has not been completed, as described in Algorithm 4. Thus,
only elements whose resource allocation have not completed
are considered for the weighted height computation (lines 5
and 12).

3) Algorithm description: The total delay of a service is
split layer by layer using the weighted heights of components
and edges. Define the weighted length of branch χk,m, denoted
by ςk,m, as the maximum weighted height of components
along the branch. Let ξk,m be the residual delay of branch
χk,m. The assigned delay constraint of component i can be
formulated as

dk,z ≤ ξk/ (max {ςk,m,∀χk,m,∃z ∈ χk,m}−ψk,z) ,∀z ∈ Vk.
(30)
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Algorithm 1: Weighted Height Computing
Input: Gk, dk, Yk,i, ak,i,n, φk,j,l, vk,i,n, ζk,j,l, ∀i ∈ Vk, j ∈

Ek, n ∈ NS ∪NU , l ∈ LS ∪ LU
Output: ψk,z , ∀z ∈ Vk ∪ Ek

1 Initialize z ← 0, for z ∈ Vk, h← 0;
2 Assign Height(z, h).

3 Assign Height(z, h):
4 if z ∈ Vk then
5 if vk,z,n ≤ 0,∃ak,z,n = 1 or ak,z,n = 0,∀n ∈ NS then
6 ψk,z ← h;
7 h← h+ 1;
8 if z is not a leaf component then
9 for j ∈ Ek, jS = z and jD is a son of jS do

10 Assign Height(j, h);
11 else
12 if ζk,z,l ≤ 0, ∃φk,z,l = 1 φk,z,l = 0,∀l ∈ LS ∪ LU then
13 ψk,z ← h;
14 ψk,z′ ← h,∃z′ ∈ Ek, z′S = zD and z′D = zS ;
15 h← h+ 2 ∗ |Yk,j |+ 1;
16 Assign Height(zD, h).

For a service edge, the allocated delay is weighted by its
placed path length:

dk,z ≤ |Yk,z| · ξk/ (max {ςk,m,∀χk,m,∃z ∈ χk,m}−ψk,z) ,
∀z ∈ Ek,

(31)
By allocating delay for each element with the minimum
average residual delay of all belonged branches, the total delay
of all branches is not higher than dk. We achieve the delay
splitting in an iterative way as in Algorithm 2. Initially, we
have ak,i,n = 0, φk,j,l = 0, vk,i,n = −1, ζk,j,l = −1,∀i ∈
Vk, j ∈ Ek, n ∈ NS ∪ NU , l ∈ LS ∪ LU for a service
k. However, Algorithm 2 is also used for the delay re-
splitting when the resource allocation of a service is partially
completed, as described in Algorithm 4. The delay of a
component or an edge whose resource allocation has been
completed is determined according to the actual delay based
on the allocated resources (lines 9, 15, and 16).

B. Problem transformation

1) Transforming delay to resource requests: Based on the
split delay, we can transform the delay constraint of services
into the computation and bandwidth resource requests for
components and service edges, ie., v̂k,i and ζ̂k,j . Since the
placed path lengths of service edges are unknown initially, we
assume that each edge is placed on a one-hop path. Thus, the
delay constraint in (23) can be replaced by

dk,i =
1

v̂k,i − ck,iηk
+
ck,i
v̂k,i

,∀k ∈ K, i ∈ Vk, (32)

dk,j =
bk,jηk ζ̂k,jX2

2F
(
ζ̂k,j − bk,jηk

)+bk,j
ζ̂k,j

,∀k ∈ K, j ∈ Ek, (33)

Recall that v̂k,i and ζ̂k,j represent the resource requests of
component i and edge j respectively. The quadratic equation
with one unknown in (32) can be rearranged as

v̂2k,i −
(
ck,iηk +

1 + ck,i
dk,i

+

)
v̂k,i +

c2k,iηk

dk,i
= 0, (34)

Algorithm 2: Delay Splitting
Input: Gk, dk, ψk,z , ∀z ∈ Vk ∪ Ek ,

ak,i,n, φk,j,l, vk,i,n, ζk,j,l, ∀i ∈ Vk, j ∈ Ek, n ∈
NS ∪NU , l ∈ LS ∪ LU

Output: dk,z , ∀z ∈ Vk ∪ Ek
1 Initialize ξk ← dk, z ← 0, for z ∈ Vk;
2 Assign Delay(ξk, z).

3 Assign Delay(ξk, z):
4 if z ∈ Vk then
5 if z = 0 then
6 dk,z ← the actual delay of local component;
7 else
8 if vk,z,n > 0, ∃ak,z,n = 1 then
9 dk,z ← the actual delay of the component z by (5);

10 else
11 dk,z ←

ξk/
(
max

{
ςk,m, ∀χk,m,∃z ∈ χk,m

}
−ψk,z

)
;

12 ξk ← ξk − dk,z ;
13 else
14 if ζk,z,l > 0, ∀φk,z,l = 1 then
15 dk,z ← the actual delay of the edge z by (7);
16 dk,z′ ← the actual delay of the edge

z′, ∃z′ ∈ Ek, z′D = zD and z′D = zS by (7);
17 else
18 dk,z ←

|Yk,z | · ξk/
(
max

{
ςk,m,∀χk,m, ∃z ∈ χk,m

}
−ψk,z

)
;

19 dk,z′ ← dk,z ,∃z′ ∈ Ek, z′D = zD and z′D = zS ;
20 ξk ← ξk − dk,z − dk,z′ ;
21 if z ∈ Vk then
22 for z′ ∈ Ek, z′S = z and z′ has not been assigned with a

delay constraint do
23 Assign Delay(ξk, z′);
24 else
25 Assign Delay(ξk, zD).

whose solutions are

v̂k,i =
ck,iηk +

1+ck,i

dk,i
−
√(

ck,iηk +
1+ck,i

dk,i

)2
− 4c2k,iηk

dk,i

2
,

(35)
or

v̂k,i =
ck,iηk +

1+ck,i

dk,i
+

√(
ck,iηk +

1+ck,i

dk,i

)2
− 4c2k,iηk

dk,i

2
,

(36)
with v̂k,i > ck,iηk. Comparing v̂k,i in (35) to ck,iηk gives

0 < 4ck,iηk
1+ck,i

dk,i
− 4c2k,iηk

dk,i
=

4ck,iηk

dk,i
,

1+ck,i

dk,i
− ck,iηk <

√(
ck,iηk +

1+ck,i

dk,i

)2
− 4c2k,iηk

dk,i
,

1+ck,i

dk,i
−
√(

ck,iηk +
1+ck,i

dk,i

)2
− 4c2k,iηk

dk,i
< ck,iηk,

ck,iηk+
1+ck,i
dk,i

−
√(

ck,iηk+
1+ck,i
dk,i

)2
−

4c2
k,i

ηk

dk,i

2 < ck,iηk.

Based on the fact that the allocated resources should be higher
than the required resource ck,iηk, the final solution of (32) is
(36). Similarly we can find the resource request of ζ̂k,j for
communication resource.

2) MILP problem: Based on the resource requests v̂k,i and
ζ̂k,j , we then have problem P2:



9

P2:

minP ′ (a,φ) =
∑

n∈NS

[
δn ·

(
pA +

∑
l∈LU∩On

pTl

+
∑

l∈LS∩On

∑
k∈K,j∈Ek

φk,j,lζ̂k,j

Rl
· pTmax

+
∑

k∈K,i∈Vk

ak,i,nυ̂k,i · pC
)

+ (1− δn) p
S

]
−
∑
k∈K

Qσk.

(37)

s.t.

(12) − (16), (19) − (20), (22), (24) − (27),

Cn −
∑

k∈K,i∈Vk

ak,i,nv̂k,i ≥ 0,∀n ∈ NS , (38)

Rl −
∑

k∈K,j∈Ek

φk,j,lζ̂k,j ≥ 0,∀l ∈ LS , (39)

pTl ≥
∑

k∈K,j∈Ek

φk,j,l

∑
k∈K,j∈Ek

HN0

(α+β log ϕl)
(
2ζ̂k,j/H−1

) ,
∀l ∈ LU .

(40)
The problem P2 leverages the split delay from constraint (23)
and the computed ˆvk,i and ˆζk,j ,∀k ∈ K, i ∈ Vk, j ∈ Ek. Thus,
the constraints (17) and (18) in the original problem P1 are
transformed into (38) and (39) respectively. Constraint (21)
becomes (40). Consequently, the problem P2 is a MILP where
we only need to determine the binary assignment variables a
and φ.

V. FLEXIBLE SERVICE PLACEMENT BASED ON
EQUIVALENT BANDWIDTH

Solving the problem P2 gives a candidate placement for
services. However, the solution of P2 may not be feasible
and optimal for the original problem P1 for the following
reasons.
a) We assume each edge is placed on a one-hop path to

calculate the resource request ζ̂k,j based on dk,j , which
may be inconsistent with the final placement result. The
delay constraint may be violated.

b) When multiple components of a service are placed to the
same edge server, the actual delay of their intermediate
edges is negligible. Reserving delay to the intermediate
edges is unnecessary. More than needed resources may be
allocated to the service.

Thus, we need to reconfigure the delay splitting of services to
avoid resource waste and guarantee the total delay constraint.
Moreover, to improve the flexibility of resource allocation, we
use the equivalent bandwidth to allocate resources to edges
that are placed to paths with multiple hops.

A. Equivalent bandwidth

Assume the edge j in service Gk is placed to a physical
path Yk,j . In order to bring the superiority of flexible resource
allocation into full play, the diversity in terms of the amount of
allocated resources for links on Yk,j is allowed, that is ζk,j,l =

ζk,j,l′ ,∀l, l′ ∈ Yk,j , l ̸= l′ is not always true. Therefore, the
equivalent bandwidth is defined as follows.

Definition 1. The equivalent bandwidth of any edge j in
service Gk with delay constraint dk,j is a set of resources
{ζk,j,l,∀l ∈ Yk,j} that satisfies

argmin{ζk,j,l,∀l∈Yk,j}

{∑
l∈Yk,j

ζk,j,l|τEk,j ≤ dk,j , ζk,j,l ≤ fl,

∀l ∈ Yk,j} ,
(41)

where fl denotes the residual bandwidth capacity of link l
defined as the total maximum data rate Rl minus the current
load of link l.

The equivalent bandwidth intends to find a set of allo-
cated resources along Yk,j to minimize the total resource
consumption while satisfying the delay request of the edge.
By allocating different amounts of resources to links on
each placed path, bottleneck links whose residual bandwidth
capacity is lower than others would not lead to placement
failure. In order to find the optimal equivalent bandwidth in
(41), we propose the following theorem.

Theorem 1. The problem in (41) is equivalent to

argmin{ζk,j,l,∀l∈Yk,j}

{ ∑
l∈Yk,j

|ζk,j,l − ζ0||τEk,j ≤ dk,j ,

ζk,j,l ≤ fl,∀l ∈ Yk,j} ,
(42)

where ζ0 ensures the delay request dk,j is satisfied when
ζk,j,l = ζ0,∀l ∈ Yk,j .

Proof. See Appendix VII-A.

B. Edge allocation based on equivalent bandwidth

It can be drawn by Theorem 1 that the edge placement with
the minimum resource cost is to allocate the same amount of
resources from all links on the placed path. However, when the
resources of some links are not enough, allocating the amount
of resources as similar as possible is desirable for the objective
of resource consumption minimization. Thus, we propose the
edge allocation algorithm based on equivalent bandwidth as
in Algorithm 3.

Algorithm 3 allocates resources for links with less residual
bandwidth in priority to make sure the delay constraint of
the edge is guaranteed and reduce the differences between
the allocated amount of resources of physical links. Binary
search is used for computing ζ0 (lines 5-16), where the initial
maximum and minimum values of ζ0, i.e., ζmax and ζmin are
set to be the maximum residual bandwidth capacity and 0
respectively. In each iteration, the center of the search space
[ζmin, ζmax] is taken to compute the delay, based on which the
search space is narrowed till its range is less than a small value
ε. Given the computed ζ0, links whose residual bandwidth
capacity is less than ζ0 will allocate all the residual bandwidth
capacity fl to the edge (line 19). After that, a new ζ0 is
computed for the left unallocated links, where the delay of
already allocated links is determined based on the allocated
resources (line 12).
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Algorithm 3: Edge allocation based on equivalent
bandwidth

Input: bk,j , F,X2, ηk, dk,j , Yk,jfl,∀l ∈ Yk,j , ε
Output: ζk,j,l,∀l ∈ Yk,j

1 Initialize ζk,j,l ← −1, ∀l ∈ Yk,j ,M ← ηkX2bk,j/ (2F ) , i← 0;
2 while ∃ζk,j,l = −1, ∀l ∈ Yk,j or i ≤ |Yk,j | do
3 ζmin ← 0;
4 ζmax ← max

{
fl, ∀l ∈ Yk,j

}
;

5 while |ζmax − ζmin| ≤ ε do
6 ζ0 ← (ζmax + ζmin) /2;
7 d0 ← 0;
8 for l ∈ Yk,j do
9 if ζk,j,l = −1 then

10 d0 ← d0 + Mζ0
ζ0−bk,j

+
bk,j

ζ0
;

11 else
12 d0 ← d0 +

Mζk,j,l

ζk,j,l−bk,j
+

bk,j

ζk,j,l
;

13 if d0 < dk,j then
14 ζmin ← ζ0
15 else
16 ζmax ← ζ0
17 for l ∈ Yk,j do
18 if ζi,j,k = −1 and fl < ζ0 then
19 ζk,j,l ← fl;
20 fl ← fl − ζk,j,l;
21 i← i+ 1;
22 if

{
ζk,j,l, ∀l ∈ Yk,j

}
satisfies the delay constraint of edge j then

23 return succeed;
24 else
25 return fail;

C. ESBC algorithm

On the basis of the problem P2 and Algorithm 3, the ESBC
algorithm is proposed. In Algorithm 4, the continuous time
is divided into multiple time windows. Services that arrive in
each time window collected as K′ are placed simultaneously.
For each service, Algorithms 1 and 2 are executed first to split
the whole delay constraint to every component and edge (lines
6-7), based on which the resource requests of components and
edges are computed (line 8). The problem P2 is then solved
to obtain the placed servers and paths for all components
and edges (line 9). In order to satisfy the delay constraint of
services and avoid resource waste, the delay of each service is
re-split. For each service with candidate placement solution,
we iteratively do the following till all the delay constraints of
components and edges can be satisfied (line 25).
a) Fix the allocation of components (line 18) or edges (line

23) whose placed servers or paths are short of resources.
b) Re-split the delay of the service by considering the fixed

delay of already allocated components and edges (lines 12-
14). In the process, the allocated delay of service edges are
weighted by the placed path length and the delay of edges
whose end components are placed together is set to 0 such
that the delay of services is strictly guaranteed.

Note that Algorithm 3 is used to achieve flexible edge
allocation.

D. Complexity analysis

Algorithm 1 iteratively carries out the Assign Height()
procedure for each component and edge in a service, costing
|Vk|+ |Ek| steps. The time complexity of Algorithm 1 can be
expressed as O (|Vk|) due to |Ek| = |Vk| − 1,∀k. Similarly,
Algorithm 2 conducts Assign Delay() with the same time

Algorithm 4: ESBC algrithm
Input: Gk, ηk, dk, Tk, ∀k ∈ K, F,X2,N ,L, pTmax, ε
Output: ak,i,n, φk,j,l, vk,i,n, ζk,j,l, σk, ∀k ∈ K, i ∈ Vk, j ∈

Ek, n ∈ NS , l ∈ LS ∪ LU
1 Initialize vk,i,n ← −1, ζk,j,l ← −1, ∀k ∈ K, i ∈ Vk, j ∈ Ek, n ∈
NS , l ∈ LS ∪ LU ;

2 for t = 1, 2, · · · do
3 Collect all services that arrive in the last time slot t as set K′;
4 for k ∈ K′ do
5 |Yk,j | ← 1, ∀j ∈ Ek;
6 Obtain ψk,z ,∀z ∈ Vk or z ∈ Ek using Algorithm 1;
7 Obtain dk,z , ∀z ∈ Vk or z ∈ Ek using Algorithm 2;
8 Compute v̂k,i, ζ̂k,j ,∀k ∈ K′, i ∈ Vk, j ∈ Ek;
9 Solve the problem P2 and extract

ak,i,n, φk,j,l, Yk,z , σk, ∀k ∈ K′, i ∈ Vk, j ∈ Ek;
10 for k ∈ K′ with σk = 1 do
11 while ∃vk,i,n = −1 or ζk,j,l = −1,

∀k ∈ K′, i ∈ Vk, j ∈ Ek, n ∈ NS , l ∈
LS ∪ LU , ak,i,n = 1, φk,j,l = 1 do

12 Obtain ψk,z , ∀z ∈ Vk or z ∈ Ek using Algorithm 1;
13 Obtain dk,z ,∀z ∈ Vk or z ∈ Ek using Algorithm 2;
14 Compute v̂k,i, ζ̂k,j , ∀i ∈ Vk, j ∈ Ek;
15 Ωk ← 0; // Judge the resource constraint
16 for i ∈ Vk do
17 if v̂k,i ≥ gn,∃ak,i,n = 1 and vk,i,n = −1 then
18 vk,i,n ← gn;
19 Ωk ← 1;
20 for j ∈ Ek do
21 Execute Algorithm 3 and obtain{

ζk,j,l, ∀l ∈ Yk,j
}

;
22 if Algorithm 3 succeeds then
23 ζk,j,l ← fl, ∀l ∈ Yk,j ;
24 Ωk ← 1;
25 if Ωk = 0 then
26 vk,i,n ← v̂k,i, ∀i ∈ Vk,∃ak,i,n =

1 and vk,i,n = −1;
27 Fix ζk,j,l, ∀j ∈ Ek, l ∈ Yk,j according to

Algorithm 3;
28 Update gn, fl,∀n ∈ NS , l ∈ LS ∪ LU .

complexity of O (|Vk|). In algorithm 3, the complexity of
the binary search for computing ζ0 is O (log2 (ζmax − ζmin))
where ζmax and ζmin correspond to the highest data rate of
physical links Rl and 0, respectively. The binary search pro-
cess is executed multiple times (at most |Yk,j |) in Algorithm 3,
resulting in the overall time complexity of O (log2Rl).

The worst case of ESBC algorithm happens when all
services in K arrive simultaneously. The initial delay splitting
of Algorithms 1 and 2 costs O (|K| |Vk|) steps. Besides, the
problem P2 can be solved using existing methods with poly-
nomial complexity. Moreover, the resource reconfiguration
costs O (|Vk|+ |Vk|+ |Ek| log2Rl) = O (|Vk|+ |Vk| log2Rl)
each time (including Algorithms 1, 2, and 3) and is car-
ried out |Vk| + |Ek| times at worst case. Finally, the
time complexity of ESBC except for solving the problem
P2 is given by O (|K| (|Vk|+ |Ek|) (|Vk|+ |Vk| log2Rl)) =

O
(
|K| |Vk|2 (1 + |Vk| log2Rl)

)
. Overall, the time complexity

of the proposed ESBC algorithm is polynomial to the size of
both MEC networks and services.

VI. SIMULATION RESULTS

A. Parameter settings

In the simulation, 1 MBS and 50 SBSs are generated over
a 200 × 200 m2 area. Each BS is equipped with an edge
server. The computation capacity of each edge server is 10
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Fig. 8: Service acceptance rate under different
average service sizes
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Fig. 9: Delay under different average service sizes
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Fig. 10: Delay satisfaction rate under different
average service sizes
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Fig. 11: Total power consumption under different
average service sizes
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Fig. 12: SBS sleep rate under different average
service sizes
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Fig. 13: Number of SBS state switches under
different average service sizes

4 6 8 10 12 14 16

Service size

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
el

ay
 (

s)

ESBC

ESC

OS_1

TS_GRC_1

OS_2

TS_GRC_2

4 6 8 10 12 14 16

Service size

0.2

0.4

0.6

0.8

1

1.2

D
el

ay
 (

s)

ES

ACO_1

TS_PR_1

ACO_2

TS_PR_2

Fig. 14: The error interval of delay under different average service sizes
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Fig. 15: The error interval of power under different average service sizes

Gigacycles/s. The path loss of wireless links over millimeter
wave is α = 157.4 and β = 32. The power density of white
noise is N0 = −174.0 dBm/Hz. The spectrum width for each
wireless link is 20MHz. The maximum transmitting power
of SBS transmitter is pTmax = 30dBm. The power of unit
computation is pC = 8.2 × 10−9W/cycle. The static power
of an active SBS is pA = 14.9W and the power of a sleep
SBS is pS = 5W.

Services arrive according to Poisson distribution. The com-
putation requests of components and the transmitting data
size of edges follow uniform distributions in [100, 1000]

Megacycles and [0.5, 1] Mbits, respectively. The task arrival
rate of each service is 1, and the average duration of services
is 10 according to an exponential distribution. The delay
requests of services are uniformly distributed in [0.1, 0.5]s.
Moreover, we set F = 20 Bytes and X2 = 1.137 (µs)

2. In
all simulations, totally 100 services are generated, each of
which locates randomly in the 200 × 200 m2 area. We use
the IBM CPLEX optimizer to solve the MILP of problem P2.
We conduct multiple runs with different random seeds for each
approach under specific parameter settings and take an average
as the final results.

B. Comparative approaches

We compare the proposed ESBC with the following ap-
proaches:
a) ESC: The ESBC without the edge allocation based on

equivalent bandwidth, i.e., all links on the placed path of
an edge allocate the same amount of resources to the edge;

b) ES: The ESC without cell zooming. Namely, all SBSs are
initially in the active state in problem P2. Zero-loaded
SBSs are switched into sleep state after placement;

c) ACO [14]: Using ACO with residual capacity-based dy-
namic pruning to search the placement of services. Zero-
loaded SBSs are switched into sleep state after placement;

d) OS [53]: Place the components and edges of a service
simultaneously using backtracking method. Zero-loaded
SBSs are switched into sleep state after placement;

e) TS GRC [51]: First, assign all components in a service to
the physical nodes with higher general resource capacity,
which is a combination of node computation capacity and
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the sum of bandwidth capacities on its neighbor links.
Then, assign edges to the shortest paths. Zero-loaded SBSs
are switched into sleep state after placement;

f) TS PR [52]: First, assign all components in a service using
Page rank. Then, assign edges to the shortest paths. Zero-
loaded SBSs are switched into sleep state after placement.

Taking the queuing delay into account, the allocated re-
sources of both components and edges should be higher than
the requests such that the expected queuing delay in (4) and
(6) will not be infinite. However, the amount of additional
reserved resources is unknown due to the unknown delay
splitting. Thus, we analyze different amounts of additional
reserved resources for ACO, OS, TS GRC, and TS PR as
follows:
a) ACO 1, OS 1, TS GRC 1, TS PR 1: Allocate additional

2000M CPU cycles for each component and 100Mbits for
each edge;

b) ACO 2 and OS 2: Allocate additional 2500M CPU cycles
for each component and 150Mbits for each edge;

c) TS GRC 2 and TS PR 2: Allocate additional 1000M
CPU cycles for each component and 10Mbits for each
edge;

C. Performance metrics

We compare the ESBC algorithm with others on the fol-
lowing performance:
a) Service acceptance rate: The number of successfully placed

services over the total number of services;
b) Delay: The average actual delay of all accepted services;
c) Delay satisfaction rate: The number of services whose

actual delay satisfies its delay constraint over the total
number of accepted services;

d) Power: Total power consumption;
e) SBS sleep rate: The number of sleep SBSs over the total

number of SBSs;
f) Number of state switches of SBSs: The total number of

state switches, i.e., from active (sleep) state to sleep (active)
state, of all SBSs.

D. Performance analysis

1) Performance over varying service size: The comparison
between ESBC and other methods under fixed service arrival
rate and varying service size (i.e., the average number of
components in each service) is shown in Figs. 8-15. It is
demonstrated from Fig. 8 that the service acceptance rate
decreases with the increase of service size on account that
it becomes harder to place services with more components,
more complex topology, and higher resource consumption.
If we increase the additional reserved resources, the service
acceptance rates decrease due to resource capacity limitation
comparing ACO 2 to ACO 1, OS 2 to OS 1, TS GRC 1
to TS GRC 2, and TS PR 1 to TS PR 2. More importantly,
compared to OS, ACO, TS GRC, and TS PR, the service ac-
ceptance rates of ESBC, ESC, and ES decrease less while the
service size increases. More services are placed successfully
in ESBC than ESC due to flexible edge allocation based on

equivalent bandwidth. A similar number of services are placed
successfully in ESBC and ES. However, ES experiences higher
power consumption as shown in Fig. 11.

For methods with fixed additional reserved resources, i.e.,
ACO, OS, TS GRC, and TS PR, the delay of services rises
with the increase of service size, as shown in Fig. 9, resulting
in the decrease of delay satisfaction rate as shown in Fig. 10.
Increasing the additional reserved resources brings lower delay
and higher service acceptance rate. However, finding a fixed
amount of additional reserved resources for different services
with different delay constraints is difficult. ESBC, ESC, and
EC execute the delay splitting and resource allocation iter-
atively to satisfy the delay constraints of all services. The
average delay is lower than 0.4s, and a 100% delay satisfaction
rate is performed.

The power consumption of all methods goes up while the
service size increases, as depicted in Fig. 11. In OS, ACO,
TS GRC, TS PR, and ES, services are placed to the SBSs that
locate close users, resulting in lower SBS sleep rates as shown
in Fig. 12. Higher SBS sleep rate and lower power are achieved
in ESBC and ESC. Note that TS GRC 1 and TS PR 1 have
lower power consumption and higher SBS sleep rate because
their service acceptance rates are extremely low as shown in
Fig. 8. The power consumption and SBS sleep rate of ESBC is
slightly worse than ESC due to its higher service acceptance
rate. As high as 0.96 of SBS sleep rate can be achieved in
ESBC and the SBS sleep rate can still be 0.78 for large scale
services.

The number of SBS state switches of ESBC is also smaller
than other methods, as shown in Fig. 13. That is because
the current state of SBSs is considered at the beginning of
each time window in ESBC to prevent from unnecessary state
switches. Overall, ESBC outperforms OS, ACO, TS GRC, and
TS PR in service acceptance rate, delay, delay satisfaction
rate, SBS sleep rate, and the number of state switches of
SBSs. A higher service acceptance rate is achieved in ESBC
compared to ESC, with similar performance in other aspects.
Compared to ES, lower power consumption, higher SBS sleep
rate and lower state switches of SBSs are performed by ESBC.

The minimum and maximum delay of different approaches
under different service sizes is depicted in Fig. 14 using
the dashed area behind each curve. Compared to ASO, OS,
TS GRC, and TS PR, ESBC has a remarkably narrower error
interval, which is comparable to ESC and ES. Moreover, the
error interval of power consumption for different approaches
under varying service sizes is demonstrated in Fig. 15 where
ESBC also performs the best. Due to page limitations, we will
not put all the interval error results of all curves. Instead, the
variance of all the performance metrics for all approaches with
different service sizes is shown in Fig. 23 in Appendix VII-B.

2) Performance over varying arrival rates of services:
ESBC outperforms others for varying arrival rates of services
while the service size stays in [2,8] randomly as shown in
Figs. 16-22. We fix the total running time to 10 time windows
and vary the number of services for each arrival rate setting.
The service acceptance rate of ESBC reaches almost 100%
while the arrival rate of services changes from 1 to 12. The
average delay of services for ESBC is below 0.5s, which 100%



13

4 6 8 10 12 14 16

Arrival rate of services

0

0.2

0.4

0.6

0.8

1
S

er
v

ic
e 

ac
ce

p
ta

n
ce

 r
at

e

ESBC

ESC

ES

OS_1

ACO_1

TS_GRC_1

TS_PR_1

OS_2

ACO_2

Fig. 16: Service acceptance rate under different
service arrival rates
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Fig. 17: Delay under different service arrival rates
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Fig. 18: Delay satisfaction rate under different
service arrival rates
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Fig. 19: Total power consumption under different
service arrival rates
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Fig. 20: SBS sleep rate under different service
arrival rates
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Fig. 21: Number of SBS power state switches
under different service arrival rates
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Fig. 22: The error interval of delay under different service arrival rates

satisfies the delay constraints of services. However, the delay
satisfaction rates of ACO, OS, TS GRC, and TS PR are lower.
The power consumption of all approaches increases with the
increase of arrival rate of services, as shown in Fig. 19. ESBC
consumes the least power compared to others except for OS 2
and ACO 2 whose service acceptance rates are extremely low.
The highest SBS sleep rate of ESBC reaches 87% when the
arrival rate of services is 1 and still 50% for the arrival rate
of 12. ESBC also shows a lower number of state switches
of SBSs than others. Furthermore, the error intervals of power
consumption and delay of ESBC under different service arrival
rates as shown in Figs. 19 and 22 are relatively small. More
results about the variance of different metrics for approaches
with different service arrival rates can be found in Fig. 24 of
Appendix VII-B.

VII. CONCLUSION

In this paper, we have proposed the ESBC algorithm to
achieve energy-efficient and flexible service placement in
MEC networks with cell zooming. First, an efficient delay
splitting strategy is designed to transform the joint service
placement and SBS power control problem into a MILP.
Furthermore, the equivalent bandwidth for an edge is defined.

The edge allocation based on equivalent bandwidth is proposed
to improve the probability of successful service placement and
reduce resource fragments. Simulation results have shown that
ESBC can achieve better performance in service acceptance
rate, power, delay, SBS sleep rate, and the number of state
switches of SBSs. In future work, we will consider the
mobility of users and more advanced intelligent services that
feature neural network architectures to enable more efficient
edge intelligence.
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APPENDIX

A. Proof of Theorem 1

Proof. Define M := ηkX2bk,j/2F , by the definition of ζ0,
we have, ∑

l∈Yk,j

(
Mζ0

ζ0 − bk,jηk
+
bk,j
ζ0

)
≤ dk,j . (43)

If we decrease the allocated resource of a link l by ∆ > 0
with resulted increased delay, then the allocated resource of
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Fig. 23: Variance of different performance metrics under different average service sizes
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Fig. 24: Variance of different performance metrics under different service arrival rates

another link l′ should be increased by ∆′ > 0 such that the
total delay request can still be hold. Thus,

(
M(ζ0−∆)

ζ0−∆−bk,jηk
+

bk,j

ζ0−∆ +
M(ζ0+∆′)

ζ0+∆′−bk,jηk
+

bk,j

ζ0+∆′

)
∑

l′′∈Yk,j ,l′′ ̸=l,l′′ ̸=l′

(
Mζ0

ζ0−bk,jηk
+

bk,j

ζ0

)
=∑

l∈Yk,j

(
Mζ0

ζ0−bk,jηk
+

bk,j

ζ0

)
,

(44)

which is equivalent to

M(ζ0−∆)
ζ0−∆−bk,jηk

+
bk,j

ζ0−∆ +
M(ζ0+∆′)

ζ0+∆′−bk,jηk
+

bk,j

ζ0+∆′

= 2
(

Mζ0
ζ0−bk,jηk

+
bk,j

ζ0

)
.

(45)

The left-hand side of the above can be rearranged as

M(ζ0−∆)
ζ0−∆−bk,jηk

+
bk,j

ζ0−∆ +
M(ζ0+∆′)

ζ0+∆′−bk,jηk
+

bk,j

ζ0+∆′

=M +
Mbk,jηk

ζ0−bk,jηk−∆ +M +
Mbk,jηk

ζ0−bk,jηk+∆′ +
bk,j

ζ0−∆ +
bk,j

ζ0+∆′

=
Mbk,jηk(2ζ0−2bk,jηk+∆′−∆)
(ζ0−bk,jηk−∆)(ζ0−bk,jηk+∆′) +

bk,j(2ζ0+∆′−∆)
(ζ0−∆)(ζ0+∆′) + 2M

=
Mbk,jηk

(
2ζ0−2bk,jηk+∆′−∆− ∆∆′

ζ0−bk,jηk

)
+

Mbk,jηk∆∆′

ζ0−bk,jηk

(ζ0−bk,jηk)
2+(ζ0−bk,jηk)(∆′−∆)−∆∆′ +

bk,j

(
2ζ0+∆′−∆−∆∆′

ζ0

)
+

bk,j∆∆′

ζ0

ζ2
0+ζ0(∆′−∆)−∆∆′ + 2M

=
Mbk,jηk(ζ0−bk,jηk)+

Mbk,jηk∆∆′

ζ0−bk,jηk

(ζ0−bk,jηk)
2+(ζ0−bk,jηk)(∆′−∆)−∆∆′ +

bk,jζ0+
bk,j∆∆′

ζ0

ζ2
0+ζ0(∆′−∆)−∆∆′

+2M +
Mbk,jηk

ζ0−bk,jηk
+

bk,j

ζ0
= 2

(
Mζ0

ζ0−bk,jηk
+

bk,j

ζ0

)
.
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Thus,

Mbk,jηk(ζ0−bk,jηk)+
Mbk,jηk∆∆′

ζ0−bk,jηk

(ζ0−bk,jηk)
2+(ζ0−bk,jηk)(∆′−∆)−∆∆′ +

bk,jζ0+
bk,j∆∆′

ζ0

ζ2
0+ζ0(∆′−∆)−∆∆′

= Mζ0
ζ0−bk,jηk

+
bk,j

ζ0
−M.

(46)
Based on the fact that higher ∆ leads to higher ∆′ and
∆∆′, it can be observed from (46) that, in order to maintain
the equality for given bk,j , F , X2 and ηk, ∆′ − ∆ should
be higher too, meaning that

∑
l ζk,j,l =

∑
l ζ0 + ∆ − ∆′

will increase for increasing ∆. Therefore, min
∑

l ζk,j,l is
equivalent to min (∆−∆′) as well as min

∑
l ζk,j,l −

∑
l ζ0,

that is min
∑

l |ζk,j,l − ζ0|. Thus, the theorem is proved.

B. Additional simulation results

The variance of different performance metrics for ap-
proaches with varying service sizes and service arrival rates
are respectively shown in Figs. 23 and 24.

REFERENCES

[1] G. Kalfas, C. Vagionas, A. Antonopoulos, E. Kartsakli, A. Mesodi-
akaki, S. Papaioannou, P. Maniotis, J. S. Vardakas, C. Verikoukis, and
N. Pleros, “Next generation fiber-wireless fronthaul for 5G mmwave
networks,” IEEE Communications Magazine, vol. 57, no. 3, pp. 138–
144, 2019.

[2] D. Soldani and A. Manzalini, “Horizon 2020 and beyond - on the
5g operating system for a true digital society,” Vehicular Technology
Magazine, vol. 10, no. 1, pp. 32–42, 2015.

[3] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An edge-
computing based architecture for mobile augmented reality,” IEEE
Network, vol. 33, no. 4, pp. 162–169, 2019.

[4] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50–58, 04 2010.

[5] W. Shi, C. Jie, Z. Quan, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[6] S. M, “The emergence of edge computing,” Computer, vol. 50, no. 1,
pp. 30–39, 2017.

[7] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[8] M. McHugh, “GPUs are the new star of moore’s
law, nvidia channel boss claims,” 2018. [Online]. Avail-
able: https://www.channelweb.co.uk/crn-uk/news/3032004/gpus-are-the-
new-star-of-moores-law-nvidia-channel-boss-claims

[9] A. Wong, “The mobile GPU comparison guide rev. 18.2,” 2018.
[Online]. Available: https://www.techarp.com/computer/ mobile-gpu-
comparison-guide/

[10] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. J. A. Zhang, “The
roadmap to 6g - ai empowered wireless networks,” IEEE Communica-
tions Magazine, vol. 57, no. 8, pp. 84–90, 2019.

[11] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp.
2204–2239, 2019.

[12] X. Zhang, Y. Wang, S. Lu, L. Liu, L. Xu, and W. Shi, “Openei: An open
framework for edge intelligence,” ArXiv preprint, vol. abs/1906.01864,
2019.

[13] G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6g: Opening new
horizons for integration of comfort, security, and intelligence,” IEEE
Wireless Communications, vol. 27, no. 5, pp. 126–132, 2020.

[14] P. Han, Y. Liu, and L. Guo, “Interference-aware online multi-component
service placement in edge cloud networks and its ai application,” IEEE
Internet of Things Journal, pp. 1–1, 01 2021.

[15] Y. Xu, G. Gui, H. Gacanin, and F. Adachi, “A survey on resource alloca-
tion for 5g heterogeneous networks: Current research, future trends, and
challenges,” IEEE Communications Surveys Tutorials, vol. 23, no. 2, pp.
668–695, 2021.

[16] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, 2015.

[17] G. Subha, D. Debashis, D. Priti, and M. Anwesha, “5g-zoom-game:
small cell zooming using weighted majority cooperative game for energy
efficient 5g mobile network,” Wireless Networks, vol. 26, no. 3, p.
349–372, 2018.

[18] H. Y. Lateef, M. Z. Shakir, M. Ismail, A. Mohamed, and K. Qaraqe,
“Towards energy efficient and quality of service aware cell zooming
in 5g wireless networks,” in IEEE Vehicular Technology Conference
(VTC2015-Fall), 2015, pp. 1–5.

[19] M. Wakaiki, K. Suto, K. Koiwa, K. Liu, and T. Zanma, “Model
predictive cell zooming for energy-harvesting small cell networks,” in
IEEE International Conference on Communications, 2018, pp. 1–6.

[20] M. Wakaiki, K. Suto, K. Koiwa, K. Z. Liu, and T. Zanma, “A control-
theoretic approach for cell zooming of energy harvesting small cell net-
works,” IEEE Transactions on Green Communications and Networking,
vol. 3, no. 2, pp. 329 – 342, 2019.

[21] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo, “Computation
offloading in mobile edge computing networks: A survey,” Journal of
Network and Computer Applications, p. 103366, 2022.

[22] Y. Yin, M. Liu, G. Gui, H. Gacanin, H. Sari, and F. Adachi, “Qos-
oriented dynamic power allocation in noma-based wireless caching
networks,” IEEE Wireless Communications Letters, vol. 10, no. 1, pp.
82–86, 2020.

[23] T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato, and K. Temma,
“Cloudlets activation scheme for scalable mobile edge computing with
transmission power control and virtual machine migration,” IEEE Trans-
actions on Computers, vol. 67, no. 9, pp. 1287–1300, 2018.

[24] H. Jiang, Z. Xiao, Z. Li, J. Xu, and D. Wang, “An energy-efficient
framework for internet of things underlaying heterogeneous small cell
networks,” IEEE Transactions on Mobile Computing, vol. pp, no. 99,
pp. 1–1, 2020.

[25] V. D. Maio and I. Brandic, “Multi-objective mobile edge provisioning
in small cell clouds,” in ACM/SPEC International Conference on Per-
formance Engineering, 2019, p. 127–138.

[26] A. Alnoman and A. S. Anpalagan, “Computing-aware base station
sleeping mechanism in h-cran-cloud-edge networks,” IEEE Transactions
on Cloud Computing, pp. 1–1, 2019.

[27] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-user offloading
for edge computing networks: A dependency-aware and latency-optimal
approach,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 1678–
1689, 2020.

[28] S. Yu, R. Langar, W. Li, and X. Chen, “Coalition-based energy efficient
offloading strategy for immersive collaborative applications in femto-
cloud,” in IEEE International Conference on Communications (ICC),
2016, pp. 1–6.

[29] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware vnf place-
ment for service-customized 5g network slices,” in IEEE INFOCOM -
IEEE Conference on Computer Communications, 2019.

[30] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in IEEE INFOCOM 2019 - IEEE Conference on Computer Communi-
cations, 2019, pp. 1459–1467.

[31] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Transactions on Communications, vol. 66, no. 6, pp. 2603–2616,
2018.

[32] S. Yang, F. L, M. She, X. Chen, X. Fu, and Y. Wang, “Cloudlet
placement and task allocation in mobile edge computing,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 5853–5863, 2019.

[33] T. T. Vu, N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Offloading energy efficiency with delay constraint for cooperative mo-
bile edge computing networks,” in 2018 IEEE Global Communications
Conference (GLOBECOM), 2018, pp. 1–6.

[34] Q. Pham, T. Leanh, N. H. Tran, B. J. Park, and C. S. Hong, “De-
centralized computation offloading and resource allocation for mobile-
edge computing: A matching game approach,” IEEE Access, vol. 6, pp.
75 868–75 885, 2018.

[35] M. Li, F. R. Yu, P. Si, W. Wu, and Y. Zhang, “Resource optimization for
delay-tolerant data in blockchain-enabled iot with edge computing: A
deep reinforcement learning approach,” IEEE Internet of Things Journal,
pp. 1–1, 2020.

[36] Q. Wang, S. Guo, J. Liu, C. Pan, and L. Yang, “Profit maximization
incentive mechanism for resource providers in mobile edge computing,”
IEEE Transactions on Services Computing, 2019.



16

[37] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, 2020.

[38] Y.-D. Lin, Y.-C. Lai, J.-X. Huang, and H.-T. Chien, “Three-tier capacity
and traffic allocation for core,edges, and devices for mobile edge
computing,” IEEE Transactions on Network and Service Management,
vol. 15, no. 3, pp. 923–933, 2018.

[39] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. Shen, “Cost-efficient
resource provisioning for dynamic requests in cloud assisted mobile edge
computing,” IEEE Transactions on Cloud Computing, vol. PP, pp. 1–1,
03 2019.

[40] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1619–1632, 2018.

[41] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscal-
ing in energy harvesting mobile edge computing,” IEEE Transactions on
Cognitive Communications and Networking, vol. 3, no. 3, pp. 361–373,
2017.

[42] C. She, Y. Duan, G. Zhao, T. Q. Quek, Y. Li, and B. Vucetic, “Cross-
layer design for mission-critical iot in mobile edge computing systems,”
IEEE Internet of Things Journal, vol. PP, pp. 1–1, 07 2019.

[43] L. Zhao and J. Liu, “Optimal placement of virtual machines for support-
ing multiple applications in mobile edge networks,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 7, pp. 6533–6545, 2018.

[44] L. Chen, W. Jigang, X. Long, and Z. Zhang, “Engine: Cost effective
offloading in mobile edge computing with fog-cloud cooperation,” ArXiv
preprint, vol. abs/1711.01683, 2017.

[45] Maofei Deng, Hui Tian, and Bo Fan, “Fine-granularity based application
offloading policy in cloud-enhanced small cell networks,” in 2016 IEEE
International Conference on Communications Workshops (ICC), 2016,
pp. 638–643.

[46] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal
joint scheduling and cloud offloading for mobile applications,” IEEE
Transactions on Cloud Computing, vol. 7, no. 2, pp. 301–313, 2019.

[47] Y. K. Tun, M. Alsenwi, S. R. Pandey, C. W. Zaw, and C. S. Hong,
“Energy efficient multi-tenant resource slicing in virtualized multi-access
edge computing,” in Asia-Pacific Network Operations and Management
Symposium (APNOMS), 2019, pp. 1–4.

[48] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, “Resource slicing
in virtual wireless networks: A survey,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 462–476, 2016.

[49] Chen-Shang, Chang, Thomas, and A. J., “Effective bandwidth in high-
speed digital networks,” IEEE Journal on Selected Areas in Communi-
cations, vol. 13, no. 6, pp. 1091–1100, 1995.

[50] X. Zhang and Q. Zhu, “Statistical qos provisioning over d2d-offloading
based 5g multimedia big-data mobile wireless networks,” in IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), 2018, pp. 742–747.

[51] Z. Wang, Y. Han, T. Lin, H. Tang, and S. Ci, “Virtual network embedding
by exploiting topological information,” in IEEE Global Communications
Conference (GLOBECOM), 2012, p. 2603–2608.

[52] C. Xiang, S. Su, Z. Zhang, S. Kai, F. Yang, L. Yan, and W. Jie, “Virtual
network embedding through topology awareness and optimization,”
Computer Networks, vol. 56, no. 6, pp. 1797–1813, 2012.

[53] P. Han, Y. Liu, and L. Guo, “QoS satisfaction aware and network recon-
figuration enabled resource allocation for virtual network embedding in
fiber-wireless access network,” Computer Networks, vol. 143, pp. 30–48,
2018.

[54] Yuan Zhang, Hao Liu, Lei Jiao, and Xiaoming Fu, “To offload or
not to offload: An efficient code partition algorithm for mobile cloud
computing,” in IEEE International Conference on Cloud Networking
(CLOUDNET), Nov 2012, pp. 80–86.

[55] D. Bertsekas and R. Gallager, Data Networks (2nd Ed.). USA: Prentice-
Hall, Inc., 1992.

Pengchao Han received the Ph.D. degree in com-
munication and information systems at Northeastern
University, Shenyang, China. She is currently a
postdoc research associate at The Chinese University
of Hong Kong, Shenzhen, China. She conducted
academic research at the Department of Electrical
and Electronic Engineering, Imperial College Lon-
don, United Kingdom. Her research interests include
wireless and optical networks, mobile edge comput-
ing, federated learning, and knowledge distillation.

Yejun Liu (Member, IEEE) received the Ph.D.
degree in communication and information systems
from Northeastern University, Shenyang, China, in
2015. He is currently a professor in the School
of Communication and Information Engineering,
Chongqing University of Posts and Telecommuni-
cations, China. His research interests include wire-
less optical communication and converged Fiber-
Wireless access network.

Xu Zhang (Member, IEEE) received the B. Eng. de-
gree in 2014 and the Ph.D. degree in communication
and information systems in 2019 from Northeastern
University, Shenyang, China. From 2017 to 2018,
he conducted academic research with the University
of Tennessee, Knoxville, TN, USA. He is currently
a Lecturer with the School of Communication and
Information Engineering, Chongqing University of
Posts and Telecommunications, Chongqing, China.
His research interests include software-defined net-
working, optical networks, resilient communication,

traffic engineering, and network optimization. He has published over 20
technical papers in the above areas in international journals and conferences.
Dr. Zhang was the recipient of the Best Paper Award of Qshine, 2017. He is
also a member of OPTICA.

Lei Guo (Member, IEEE) received the Ph.D. de-
gree from the University of Electronic Science and
Technology of China, Chengdu, China, in 2006. He
is currently a Professor with the Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China. He has authored or coauthored more than 200
technical papers in the above areas in international
journals and conferences, such as the IEEE Transac-
tions on Communications, the IEEE Transactions on
Wireless Communications, the IEEE/OSA Journal
of Lightwave Technology, the IEEE/OSA Journal of

Optical Communications and Networking, the IEEE GLOBECOM, and the
IEEE ICC. His current research interests include communication networks,
optical communications, and wireless communications. He is a member of
OSA, and also a Senior Member of CIC. He is currently an editor for five
international journals.


