Cost-Minimized Computation Offloading of Online
Multi-Function Services in Collaborative
Edge-Cloud Networks

Chuan Feng, Pengchao Han, Xu Zhang, Qihan Zhang, Yue Zong, Yejun Liu, and Lei Guo

Abstract—Cloud Computing (CC) is powerful for the compu-
tation offloading of services, promoting the implementation of
various modern applications. Mobile Edge Computing (MEC)
can provide low-latency services utilizing edge servers locating
in proximity to users. The combination of MEC and CC can
give play to the dual advantages of both. However, it is a
challenging problem to offload service requests to the collabo-
rative edge-cloud networks aiming at minimizing costs due to
the resource limitation of edge servers and the online feature
of services. To address this issue, we mathematically model the
service requests with multiple inter-connected functions. Then,
the problem of computation offloading of multi-function service
requests in collaborative edge-cloud networks is formulated to be
an Integer Linear Programming (ILP) and is proved to be NP-
hard. Furthermore, a Cost-minimized Computation Offloading
with Reconfiguration (CCOR) algorithm is proposed to minimize
the total cost of online services. Finally, simulation results show
that the proposed CCOR algorithm can effectively reduce the
cost of computation offloading with higher resource utilization
of edge cloud compared with baseline algorithms.

Index Terms—Computation offloading, cost optimization, mo-
bile edge computing, cloud computing.

I. INTRODUCTION

Cloud Computing (CC) [1] has gained a lot of popularity
for providing services to modern applications, e.g., AR/VR,
online deep learning platform, and cloud games by leveraging
resources such as CPU, RAM, and storage [2] in a shared
resource pool. As a result, complicated and expensive devices
are not necessary for users to get access to complex appli-
cations. For example, thank to cloud games [3], players no
longer need to have high-end processors and graphics cards
on mobile phones to play 3H (high quality, high sales, and
high cost) games.

However, applications [4] in the 5G era have posed higher
requirements in terms of mobility, security, energy [5], latency,
and reliability [6]. The service provisioning supported by the
central cloud is facing the challenge of the Quality of Service
(QoS) guarantee for these applications, especially the delay.
For instance, in a multiplayer online game, the network delay
affects the time interval between two actions and thus degrade

Chuan Feng, Qihan Zhang, and Yue Zong are with the School of Computer
Science and Engineering, Northeastern University, Shenyang 110169, China.

Pengchao Han (Corresponding author) is with the School of Science and
Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
(e-mail: hanpengchao@cuhk.edu.cn).

Xu Zhang, Yejun Liu, and Lei Guo are with the School of Communication
and Information Engineering, Chongqing University of Posts and Telecom-
munications, Chongqing 400065, China.

the user experience. As a result, turn-based strategy games
have very low delay requirements, i.e., 50 ms. For games
with static scenarios, such as strategy and role-playing games,
players have larger tolerable delay but still no more than 100
ms. Therefore, Mobile Edge Computing (MEC) has emerged,
where geographically distributed edge clouds are located in
proximity to end-users [7]. Namely, each wireless base station
(BS) is able to access an edge cloud containing multiple inter-
connected servers.

Combining the MEC and CC is beneficial for service pro-
visioning with not only low latency but also high computation
capacity. Specifically, by making full use of the computing
power of edge devices, MEC [8] is preferable for processing
real-time applications with private data, relieving the commu-
nication overhead for the computation offloading to the central
cloud [9]. On the other hand, the central cloud with infinite
capacity is necessary as a compensation for the resource-
limited edge cloud. Therefore, it is promising to offload service
requests from users to the collaborative edge-cloud networks
for high QoS service provisioning with full coverage. In order
to improve the QoS of services, i.e., to reduce delay, any
service request is inclined to be offloaded to the edge cloud.
The central cloud is responsible for holding requests when the
resources of edge cloud are not enough.

A. Motivation

Related works for computation offloading in collaborative
edge-cloud networks either assign one service request to one
edge/central cloud server [10] or offload a part of a request
from the local device to a server, i.e., partial offloading [11].
However, offloading each service request as a whole is always
unavailable due to the resource limitation of edge servers.
Partial offloading is also impractical on account that any
application cannot be split arbitrarily [12], [13]. In addition,
offloading online service requests according to their arrival
time always results in the unbalanced distribution of workloads
on the whole cloud networks. Reconfiguration of already
offloaded services is critical to achieve global optimization.
Overall, in this paper, we highlight the computation offloading
of online service requests with multiple functions in collabo-
rative edge-cloud networks.

B. Contributions

We mainly make the following contributions.

1) In collaborative edge-cloud networks, we model the
service requests by characterizing multiple functions in
each service request, based on which, servers can work
collaboratively to support a service. Furthermore, we
formulate the problem of the computation offloading of
multi-function service requests aiming at minimizing the
total cost as an ILP model and prove it to be NP-hard.

2) To decrease the total cost of the service provisioning,
a Cost-minimized Computation Offloading with Recon-
figuration (CCOR) algorithm is proposed to offload
more service requests that arrive online to edge cloud
networks. Note that, the three processes (function of-
floading, link allocation, and service reconfiguration) are
designed in the CCOR algorithm.

3) We conduct numerous simulations to verify the ef-
fectiveness of the proposed algorithms under different
scales of physical networks. For small-scale networks,
the cost of the proposed CCOR algorithm only 3.51%
higher than the ILP solution. In addition, we also set up
different service request scenarios to verify the scalabil-
ity of the overall framework in large-scale networks. The
results show that the lower cost is achieved by CCOR
compared with the Baseline algorithms.

The remainder of this paper is organized as follows. The
related works are reviewed in Section II. Section III presents
the system models, based on which the problem of the
computation offloading of multi-function service requests in
collaborative edge-cloud networks is formulated and analyzed.
In Section IV, we propose a CCOR algorithm for offloading
online service requests. Section V presents the simulation
results and we conclude this paper in Section VI.

II. RELATED WORK
A. Service Architecture

There are many existing works focusing on the field of MEC
networks considering user characteristics. The characteristics
of users can be summarized from different perspectives, in-
cluding required service architecture, i.e., full offloading or
partial offloading and different number of subtask/functions,
environment uncertainty sensing, online service requests, user
mobility, etc.

Classic computation offloading intends to offload user re-
quests to the central cloud, where each request is evaluated by
computation resource and cannot be split during offloading.
They have emphasized on minimizing the resource cost and
guaranteeing the QoS of users [14], [15], [16]. Leveraging
the advantage of the low latency of using edge servers for
computation offloading, works in the literature have empha-
sized on designing the implementation protocols of real-world
applications [17], optimizing the deployment of edge servers
[18], and mobility management of services [19].

However, taking the characteristic of limited resources of
edge servers into account, placing a large-scale service as a
whole is always not available in practice. The partial offloading
[20], [21], [22], [23], [24], [25], [26], has been investigated to
offload a part of the computation instructions of a service to
an edge server to meet the computation capacity constraint of

the server. For example, aiming to maximize users’ perceived
satisfaction, part of each service request with specific functions
can be offloaded to edge servers over a 5G heterogeneous
network in [20]. For each service request, not only which
server should be chosen for the offloading but also how much
computation instructions should be offloaded are required to
be determined. However, it is impractical to split any services
randomly.

Some works focus on Virtualized Network Functions
(VNFs) in [27], [28], [29], [30]. For a specific network appli-
cation/service, the operators will dynamically select a chain of
VNFs. More generally, a service can be divided into multiple
dependent functions. For example, a face recognition appli-
cation is mainly composed of five functions including image
acquisition, face detection, pre-processing, feature extraction,
and classification [22]. There are three typical architectures of
services with multiple functions, namely sequential, parallel,
and general structures [31], [32]. In this paper, we consider the
general service architecture where each service is modeled by
a graph with each function acting as a vertex. Highlighting the
services with multiple functions is beneficial for the real-world
computation offloading in edge cloud networks.

There are many works in the field of computation offloading
in MEC networks considering other user characteristics apart
from required service architecture, including environment un-
certainty sensing, online service requests, and mobility [20],
[26], [33]. Considering the uncertainty introduced by the
shared computing environment, the users are driven to exhibit
a risk-aware behavior [20]. Aiming to maximize their payoff
from the resources allocation, the authors have proposed the
autonomous action model under the uncertainty. By charging
users a price, the authors have regulated user behavior in
offloading requests to the Access Point (AP) in [26]. The user
decides the number of tasks to offload by comparing its utility
function with the delay cost required by edge computing.
Considering the mobile nature of users, the authors have built a
mobility model based on the obtained trajectory of a pedestrian
in [33] for studying the problem of task execution for latency
minimization.

B. Computation Offloading in Edge Cloud Networks

There are many works stressing the computation offloading
in edge cloud networks constraining that each user request
should be fully offloaded to one edge server [34], [33], [35],
[36], [37]. A method on the offloading of user requests to the
only one edge server has been designed to minimize the total
resource cost as well as the latency of users in [34]. Besides,
more works focus on the computation offloading in edge cloud
networks with multiple servers [33], [35], [36], [37], which
is more challenging as the offloading decision includes not
only whether or not a request should be offloaded but also
where to offload [21], [22]. The mobility of users that feature
multiple service requests has been taken into account during
the computation offloading in [33]. A heuristic offloading
algorithm has been developed for improving the utility of the
system in [35]. The problem of computation offloading aiming
at maximizing the offloading gains or minimizing costs has
also been solved in [36] and [37] respectively.

Central

|

| | |
| | ! E Edge ((‘ ’)) Base !
! _ i Server ‘ Station |
I RequestR So—~ I |
! Ne” ! :
| - 1 == Function @ User |
! Functions ! ! !

Fig. 1: A collaborative edge-cloud network architecture

The partial offloading of services in edge cloud networks
has also been widely investigated [20], [21], [22], [23], [24],
[25], [26], [38]. A price-based distributed method has been
proposed to manage the offloaded services in [23] where each
service request can be arbitrarily divided bitwise for partially
local computing and partial offloading. In [24], the authors
considered the heterogeneous energy harvesting MEC systems
with multiple mobile devices and multiple edge servers. Any
service request could be partially or fully offloaded to an edge
server via wireless channels. The problem of multi-hop multi-
task partial computation offloading in edge computing systems
has been studied in [25] by considering the partial offloading
among edge devices. Moreover, an incentive-based offloading
control framework for the multi-access edge computing net-
works has been proposed in [26] for the partial offloading
of service requests to access points. However, the practical
characteristic of services, i.e., services arrive online, has been
neglected in these works, which poses challenges for the global
optimization of the offloading of all services.

Considering multiple functions offloading, some studies
have focused on the computation offloading of VNF [29], [30]
in edge cloud networks. The mentioned studies [27], [28] have
considered VNFs placement instead of computation offloading
of VNF. By sharing existing VNF instances or creating new
VNF instances in cloudlet, the authors in [29] have considered
the computation offloading approach of VNF in a mobile edge
cloud network, aiming to maximize the number of admitted
service requests within a limited time horizon while minimiz-
ing the operating cost of admitted service requests. In [30],
the authors have applied the computation offloading method
of VNF to the hardware processing node of the elephant
stream. In terms of the computation offloading of services with
multiple functions in edge cloud networks, the joint scheduling
and offloading of mobile applications has been investigated
in [32]. Aiming at minimizing the energy consumption while
satisfying a strict delay constraint, the authors considered
a practical offloading of applications consisting of a set of
functions in [39]. However, the potential of utilizing the central

TABLE I: SUMMARY OF MAIN NOTATIONS

Notation Description

R Set of service requests.

G (N, L) The physical network.

Gy (Vr,Ey) The rth service request.

A The cost of unit computation resource in edge
cloud.

B The cost of unit bandwidth resource in edge
cloud.

é The cost of offloading unit computation resource
to the central cloud.

cr The computation resource required by the ith
function in the rth service request.

C'j The computation resource capacity of the jth
edge node.

C’J’. The remaining computation resource capacity of
the jth edge node.

by, The bandwidth requested by the eth link of the
rth service request.

By, '(fl‘le}c)nal bandwidth capacity of the physical link
Js3')-

€s The source node of the eth link in the rth service
request.

ed The destination node of the eth link in the rth
service request.

p The path with the maximum remaining band-
width from j to 5.

pL The path p of the eth link in the rth service
request.

By The bandwidth of path p, i.e., the minimum
bandwidth of links on p.

TR, ; The transmission rate of the wireless channel
between user r and BS j.

BW, ; The bandwidth of the wireless channel between
user r and BS j.

D; The transmit power of the user r.

hrj The channel gain of the wireless channel be-
tween user 7 and BS j.

37 J The noise power of the wireless channel between

user r and BS j.

Zr A binary decision variable, taking 1 if the service
request 7 is uploaded to the central cloud and O
if it is offloaded to the edge cloud.

y;j A binary decision variable. It is equal to 1 if
the ¢th function in the rth service request is
allocated to the jth node in the edge cloud,
otherwise it is 0.

a:;(jyj,) A binary decision variable. It is equal to 1 if the

eth link in the rth service request is allocated to
the physical link from j to 7/ in the edge cloud,
otherwise it is 0.
« The coefficient of bandwidth resource with re-
spect to computation resource for offloading
services to the central cloud.
The average utilization rate of node resource.
The average utilization rate of link resource.
The average path length in hops.

o omS

cloud to make up for the resource-limited edge cloud networks
for the computation offloading of multi-function services has
also been ignored.

In summary, we comprehensively consider the real-world
online service requests that are structured by multiple inter-
connected functions and intend to design efficient cost-
minimized computation offloading strategies in collaborative
edge-cloud networks.

III. SYSTEM MODELS AND PROBLEM DEFINITIONS
A. Collaborative Edge-Cloud Networks

The computation offloading framework of service requests
in collaborative edge-cloud networks is shown in Fig. 1.

The physical network consists of a central cloud, multiple
geographically distributed edge clouds, and various terminal
devices, i.e., users. The computation capacity of the central
cloud is assumed to be infinite. The edge cloud network is
represented by G (N, L) where N represents the set of edge
nodes including BSs and edge servers and L represents the
set of links among edge nodes. The computation capacity of
each node j € N is C;. Each physical link between j € N
and j' € N, i.e., (j,7'), has the bandwidth capacity of B; ;.
In the MEC networks, we suppose that users get access to the
target edge servers deployed at the associated BSs through
5G wireless links [40]. Each base station is allocated with a
specific wireless channel and the channel interference among
BSs is ignored. All the users with the coverage of a BS share
its wireless channel in the manner of Frequency Division
Multiple Access (FDMA) and its extended technique, e.g,
Orthogonal Frequency Division Multiple Access (OFDMA)
and Single-carrier Frequency-Division Multiple Access (SC-
FDMA). The transmission rate T'R,. ; of the link between the
user r and the BS j can be calculated based on Eq. (1), where
BW, ; denotes the bandwidth between the user r and the BS
Jj» pr is transmitted power of the user r, o2 o denotes power
of white noise and h, ; denotes the channel gam

r " h'r.'
TR,; = BW,, -log,(1 + 2) (1)

B. Service Requests

1) Request model: Denote the set of service requests by
R. Each online arrived service request r € R is represented
by G, (V,., E,.) where V, represents the set of functions and
E, indicates the set of edges among the functions in V.. The
resource demand of the service request € R is represented by
(cf,br) where ¢ denotes the computation resources required
by the function ¢ in V. and b] means the bandwidth requested
by the eth link in E,. Any function in V,. can be placed either
to a edge server or the central cloud, corresponding to a virtual
machine. We assume that each function is not splittable and
thus placed to only one edge server (or the central cloud).

2) A real-world example of service request: In this section,
we take cloud games [3] as an example to illustrate the archi-
tecture of service requests. Functions in a cloud game consist
of image rendering, video en/decoding, account management,
etc. Data transmitting among functions corresponds to the
instructions of players, images, and voices and so on. For
the cloud game with moving players, different resolutions
for rendering images in the game are provided to users with
different moving speeds. Specifically, as a user keeps moving,
the real-time speed of the user can be obtained by the accessed
BS. Generally, when the speed is less than or equal to 2m/s,
the user either is passing through this BS slowly or will stay
at the BS for a while. The longer stay time of the user at
the BS, the higher quality of service, i.e., better resolution
of the rendered picture, should be ensured. Therefore, 1080p
resolution with 6Mbps bandwidth games should be provided
in this case. Otherwise, when the speed is greater than 2m/s
indicating that the user passes through the BS quickly, then
the basic requirements on the quality of service should be

satisfied. Thus the resolution of 480p resolution with 2Mbps
bandwidth can be allocated to the user. Note that our model
is also applicable to service requests other than cloud games.

C. Problem Formulation

In this section, the problem of computation offloading of
multi-function service requests in collaborative edge-cloud
networks is formulated as ILP with the main notations defined
in Table L.

Objective:
[R] [N Vx|
Minimize: Y, > Z [(A—z) ¢yl - A+
r=1j=114i=
|| |R| Vel
OID DR (TN R ANRY D Sl D S At
r=1eckE, r=1 =1
2
Subject to:
|V
nyngl,VreR,VzeVr, (3)
j=1
|R| V]
EZC Yi; < Cj,VjeN, “4)
r=11i=
Ty oy Tr Gy S 1L Vre R V() j') € L,Ve € Ey,
> |] VreR ©
xz"’_wg i’ :y(:s_yg P VT €)
N (4,3 :(3759) 2 ds] ©)
Vee E,, Vj € N,
(NI V]
7 Zf Zl Z yz] # 0
— j=li=1
z, = N Vil ,Vr € R, @)
Loaf Y Z Yij =
j=1l1i=
|| o,
El Z}:E A T gy S B, Y (4, j') € L. 8)
r=leck,

The objective in Eq. (2) is to minimize the cost of all
the service requests consisting of the computation cost for
offloading functions to edge servers, the bandwidth cost for
link allocation, and the cost of offloading functions to the
central cloud. Equations (3) and (4) are the constraints for
offloading functions to edge servers. Equation (3) indicates
that each function in a service request should be allocated to
one edge node in the edge cloud. The computation resource
capacity constraint of each edge server is stated in Eq. (4),
indicating that the occupied resource by all the functions
that are offloaded to an edge server should not exceed the
computation capacity of the edge server. The allocation of
links among functions in a service request is constrained by
Egs. (5) and (6) where Eq. (5) indicates that each link in a
service request should be allocated to a loop-free physical path
between the edge servers that its end functions are offloaded
and the flow conservation is formulated in Eq. (6). Any service
request that can not be fully offloaded to the edge cloud is then
offloaded to the central cloud with z, = 1 as illustrated in
Eq. (7). The bandwidth occupied by service requests on each
physical link should not exceed the total bandwidth capacity
of the link as shown in Eq. (8).

Algorithm 1: CCOR algorithm

Algorithm 3: Link Allocation

Input: R, G (N, L)
zr,Vr € Ryi€V,,e€ Erj €

Output: y; ., x;(j#j,y
N1 (]7]/) €L
1 for r € R do
2 if Algorithm 2 with inputs V. and N succeeds then
3 if Algorithm 3 with inputs vi].,Vi €Vy,j €N, E, and
L succeeds then
4 Update the remaining resources of physical nodes and

links according to
Ui s @l 5 0y Vi € Ve € Erj € N, (4, 4') € Ls

5 end

6 else

7 | Execute Algorithm 4 with inputs r, R, and G (N, L);
8 end

9 end

10 else

11 \ Execute Algorithm 4 with inputs 7, R, and G (N, L);
12 end
13 end

14 Calculate the cost based on Eq. (1);

Algorithm 2: Function Offloading

Input: V., N
Output: yf’j,Vi eVrjeEN
1 Rank functions in V;. in the decreasing order of their computation
requirements as V/;
2 Rank nodes in IV in the decreasing order of their remaining
computation capacity as N';
3 k<« 1;
4 for i € V! do

5 Featch the kth node 7 in N/

6 if ¢] < C]’. then

7 y: j= 1;

8 kE+—k+1;

9 end

10 else

11 y£j<—0,Vi€Vr,j€N;
12 Return False;

13 end

14 end

D. Problem Analysis

Theorem 1: The problem of cost-minimized computation
offloading of multi-function service requests is NP-hard.

Proof: It can be obtained that all the constraints in the above
problem are linear with respect to variables yf o xz Girh and
z, except for Eq. (7). We first prove that the Eq. (7) can be
converted into linear constraints by introducing a large number
M and a very small number € with € > 0. The Big-M method

can be utilized to construct Eqgs. (9) and (10) based on (7):

INT V]

> X Yig
2, <M-|1- =8 — ‘1;:|) ©))
|12V:| \g\ i
2 2 Vi 10
z, > M- 7171‘;:‘ +e. (10)
IN| Vel

It can be obtained that if =1 2im1 Vi # 0 indicating

that the service request r is offloaded to the edge cloud other
N| Vil

than the central cloud, then lezll lezll yi ;= V| As are-

sult, Egs. (9) and (10) are equivalent to z, < O and 2, > M+-¢.

Since z, is a binary variable for any service request 7, this

Input: yz?“_j,Vi eVr,jEN, E-, L

Output: a:z_(j’j,),Ve € Er(j,j) €L

1 for e € E, do

2 Find out the physical nodes j and j' with ygs = 1 and
ygdvj/ =1

3 Calculate the path p with the maximum remaining bandwidth
from j to j’ in graph G;

4 if b, < B, then

5 | 2l < LYGI) ep

6 end

7 else

8 x;{]}j,} + 0,Ve € Er, (j,j') € L;

9 Return False;

10 end

11 end

Algorithm 4: Service Reconfiguration

Input: r, R, G (N, L)
Output: z,,Vr € R
1 Release the physical resources occupied by service requests, denoted
by W, whose total computation resource costs of each service
request less than that of r;
2 Rank the service request r and all the services in W in the
decreasing order of their total computation resource costs as W';
3 for v’ € W do

4 if Algorithm 2 with inputs V,.» and N succeeds then

5 if Algorithm 3 with inputs y{)/j,Vi €V,.,j5€N, E. and
L succeeds then

6 \ 20 05

7 end

8 else

9 \ 20— 15

10 end

11 end

12 else

13 | 2z 15

14 end

15 end

gives z, = 0. On the contrary, if Zlfi‘l Z‘lg y; ;=0, then

z, < M and z_ > ¢. Thus, 2, = 1 on account that both M
and € are positive with M >> 1 and € << 1. In summary,
Eq. (7) can be converted into two linear constraints, i.e., Egs.
(9) and (10).

Based on the fact that all the decision variables are positive
and all the constraints are in or can be converted to linear
forms, this problem is an integer linear programming. Since
the ILP is NP-hard [41], [42], the problem of cost-minimized
multi-function service offloading is also NP-hard. Therefore,
we have proved the theorem.

IV. HEURISTIC ALGORITHM

In this section, service requests that arrive in sequence are
offloaded to the collaborative edge-cloud network using the
proposed CCOR algorithm including function offloading, link
allocation, and service reconfiguration.

A. Function and Link Allocation

In Algorithm 1, for any service request r in R, the
function offloading (line 2) is applied first, followed by the
link allocation (line 3). The cost is calculated based on the

results of function offloading and link allocation as shown in
Eq. (2).

The function offloading is achieved in Algorithm 2. For
any service request r, all the functions in V, are ranked in
the decreasing order of their computation requirements as V.
Similarly, all the physical nodes in N are also ranked in the
decreasing order of their remaining computation capacity as
N’ (lines 1-2). The edge server with higher remaining com-
putation resource is selected for offloading the function with
higher computation requirement (line 7). Once the remaining
capacity of the kth edge server in N’ cannot meet the resource
requirement of the kth function in V,, the algorithm fails.

Based on the results of function offloading for a service
request 7, ie., y; ;,Vi € V;,j € N, the allocation of links
among functions is described in Algorithm 3. Any link e
between two functions es and ey is placed to a loop-free path
with the maximum remaining bandwidth capacity between
the offloaded edge nodes j and j’ of the source and the
destination of the link, i.e., y, ;=1 and yc, ;, =1 (lines 2-
5). The algorithm fails if we fail to find a path with sufficient
bandwidth resource for any link e.

B. Service Reconfiguration

The failure of either function offloading (line 7 in Algo-
rithm 1) or link allocation (line 11 in Algorithm 1) will
trigger the service reconfiguration as described in Algorithm
4.

The service reconfiguration related to service r is stated
in Algorithm 4, we release the physical resources occupied
by service requests, denoted by W, whose total computation
resource costs are less than that of (line 1). Then the released
services are re-offloaded in order (lines 2-3). Algorithms 2
and 3 are utilized again for the re-offloading. Any service
that can not be re-offloaded to the edge cloud network are
uploaded to the central cloud (lines 9 and 13).

C. Complexity Analysis

The time complexity of Algorithm 1 consists of three parts.
First, performing the function offloading of |R| service re-
quests, i.e., Algorithm 2, costs O (|V| - log |V;|) for function
ranking, O (]N| - log|N]) for node ranking, and O (|V;|) for
function allocation. Thus the time complexity of Algorithm
2is O (|N]-log|N|) since generally we consider |V,.| < |N|.
Second, finding the path with the maximum remaining band-
width for each link E, costs O(|N|?). Therefore, the time
complexity of Algorithm 3 can be expressed as O(| E,.|-|N|3).
For the service reconfiguration in Algorithm 4, node ranking
is performed for |WW| service requests and the time complexity
is O(|W|-|N|-log|NJ). Then the path of the maximum
remaining bandwidth is searched. The time complexity can
be expressed as O(|W| - |E,| - |N|3). Reconfiguring at most
R services, i.e., |[W| < |R|, consumes O (|R| - log |R]) steps
for service ranking and O (|R| - (|N|-log [N| + |E,| - [N]?))
steps for re-offloading. Thus, the time complexity of Algo-
rithm 4 is O (|R|-log|R|+ |R|-|E.|-|N[®). Finally, the
total time complexity of Algorithm 1 is expressed by
O (|R| -log|R| + |R| - |E.| - N|?) for |R| service requests,
which is polynomial time.

-7 Request 2 R

/,/’/ Request 1 - . Request N RN
/ T Sl / N
[- — . \’
\ I - - -)
N % A N\

T ‘\‘\Pool of servlce requests /,,/“/

CCOR
algorithm

Base we==—e OpenFlow
Station Switch

__

i Edge ((R))

Fig. 2: SDN-based framework

D. SDN-Based Framework

In the SDN-based framework as shown in Fig.2, the edge
servers are connected by OpenFlow switches. The BS is
usually co-located with a switch for the purpose of serving
users and network management. The network management and
control is realized in a centralized manner with a controller.
The controller communicates with underlying network equip-
ment via the OpenFlow protocol. The underlying equipment
performs routing operations according to the flow entries
distributed by the controller. In Fig. 2, when a service request
arrives at the OpenFlow switch through a BS. The OpenFlow
switch sends this request to the controller by the Packet_In
message (Step 1). When multiple service requests arrive at
the same time, the controller forms a centralized request pool.
Then, the controller calls the CCOR algorithm to offload the
calculation requests (Step 2). Finally, based on the result of
the CCOR algorithm, the controller distributes the flow entries
to the corresponding switch by the Flow_Mod message (Step
3), thereby offloading each function in the request to the
corresponding edge server. The flow entry inserted into the
edge node is quantitatively evaluated in Section V.

V. SIMULATION RESULTS
A. Parameter Settings

We conduct two edge cloud network topologies for the
simulations, including the small-scale network with N = 6,
L =9, ie., n6s9 and the large-scale network with N = 11,
L = 26, i.e,, nl1s26 as in Fig. 3. The total bandwidth of
each link is 100 Mbps. The computation capacity of each edge
node is 96 CPUs. It is also worth noting that our algorithm is

U

(a) 6-node, 9-link
n6s9 network topology

(b) 11-node, 26-link
n11s26 network topology

Fig. 3: Network topologies used in the simulation

50000 ‘
—e—|LP A
—=— CCOR
40000 4 |—o— Basdlinel|
—&a— Baseline2
B i
g 30000
B /
(s}
'_
20000
10000+ 4
—"
0

40 50 60 70 80
Number of service requests

©
o
=
8

Fig. 4: Total cost of different methods over varying number of service requests
in n6s9

running in a virtual machine with a 2-core CPU and 4GB of
memory.
The number of links in the rth service request is ran-

, W} The computation

domly generated in [|VT| -1
resource required by each function in a service request ranges
within [1,4] CPUs. The bandwidth requested by each link in
a service request is in [1,6] Mbps. For the n6s9 topology,
the number of service requests increases from 40 to 100. The
large-scale topology (nl1s26) is evaluated under the number
of service requests increases from 30 to 400. We set the
number of functions in each service in [2-4] randomly when
the number of functions in each service is not specifically
described.

The proposed CCOR algorithm is compared with three
approaches as follows.

o ILP: using the IBM CPLEX optimizer [42] to solve the
ILP in Section III.C.

o Baselinel [29]: allocating functions of each service re-
quest to edge servers using maximum bipartite matching
and routing links to the shortest paths.

o Baseline2 [43], [44]: allocating functions of each service
request using Algorithm2 and routing links to the shortest
paths.

The performance metrics for evaluating the proposed algo-

5 80 [‘
3 {[—=—ccor
o /57 |—=—Basdlinel
%70— —-— Basdline2
oy
12 65_
B
=2
&3 60
B 55
gso—
k]
5 45
Qo
Ewl
=4

35

40 50 60 70 80 90 100

Number of service requests

Fig. 5: Number of service requests offloaded to the edge cloud in different
methods in n6s9

\
g 104 [——CCOR
5 —o— Baselinel
g —a— Baseline2
© 09-
°
o
c
S
8 0.8
c
°
oz
5
g
2 . z/
<
05

40 50 60 70 80 90 100
Number of service requests

Fig. 6: Average utilization rate of node resource of different methods in n6s9

rithm are listed as follows.

« Total cost is defined in Eq. (2). Moreover, we set A = 10,
B8 =5, and § = 100c, where « is defined as

Vel
> Aci+ X BT
=1 cEEr
a= Vel : (11
> A
i=1

o The number of service requests offloaded to the edge
cloud in different networks.

o The average utilization rate of node resource 7 is defined
as the ratio of the computation resource allocated to

service requests over the total computation resource of
all nodes in the edge cloud:

BRI Vel

T X (-2
r=1i=1

n= IN]
> Cj
j=1

12)

o
@
[=]

—=—CCOR
—o— Baselinel|
—=a— Baseline2

o

o

a
1

0.50

Average utilization rate of link resource

7

40 50 60 70 80 90 100
Number of service requests

Fig. 7: Average utilization rate of link resource of different methods in n6s9

Average path length (hops)

40 50 60 70 80 90 100
Number of service requests

Fig. 8: Average path length (hops) for link allocation in different methods in
n6s9

o The average utilization rate of link resource ¢ is define
as the ratio of the bandwidth allocated to service requests
over all the bandwidth resource of the edge cloud:

R|
Z, % bemer) (13)
£= > Bggn

(4.3")EL
o The average path length in hops) is defined as the
average path length evaluated by number of hops for
allocating links in services:

d Pz |
= eeEE |E7~|A(1_z7‘)
x = Sl (14)
£ s

o Running time is in milliseconds.
e The variance of link resource utilization.

B. Performance of CCOR in Small-Scale Networks

For the n6s9 topology, the total cost of different approaches
under the different number of service requests is demonstrated

—=—CCOR A
350000 4 |—=— Baselinel| ol
—— Basdline2 /
300000 - //

7

AN

/
zZ

50 100 150 200 250 300 350 400
Number of service requests

Fig. 9: Total cost for random number of functions in each service request in
nll1s26

.
3

—=—CCOR
—=—Basdlinel]

—-é-—BaselineZ/

i

N

o
!

N
S

8

™

SN

Number of accepted requests by edge cloud

E\e

n
o

50 100 150 200 250 300 350 400
Number of service requests

Fig. 10: Number of service requests offloaded to the edge cloud of different
methods for random number of functions in each service request in n11s26

in Fig. 4. The total cost of the proposed CCOR is obviously
less than that of the Baselines and is close to the optimal cost
obtained by ILP. At most 48.69% and 57.40% of the cost can
be saved by CCOR compared with Baselinel and Baseline2.
Only 3.51% higher cost is induced in CCOR compared with
ILP solutions.

To improve the quality of services, service requests are
preferred to be offloaded to the edge cloud to obtain a lower
resource cost and delay compared with uploading service
requests to the central cloud. The number of accepted service
requests by edge cloud in different methods is shown in Fig.
5. It can be obtained that CCOR offloads more services to
edge servers than Baselines, thus better QoS of users can be
provided by CCOR.

Since more services are offloaded to the edge cloud, higher
average resource utilization rates of nodes and links are
achieved by CCOR as demonstrated in Figs. 6 and 7, indicat-
ing that CCOR can make full use of node and link resources.
We can see from Fig. 8 that the average path length (hops)

TABLE II: Running time of different methods for random number of functions in each service request in nl11s26

Number of service requests 40 60 80 100 120 140
CCOR (ms) 59895 11.0018 13.9658 15.9568 19.9775 22.9470
Baselinel (ms) 983.6473 975.7850 993.0146 1004.4097 1008.7413 1025.0804
Baseline2 (ms) 29890 3.9885 59852 6.9804 10.9562 11.9397
1000 - ‘
1.04—=—CCOR g —=—CCOR

5 —e— Baselinel § 900

g 0o = Bassline2 g

£ 08 B 800

2 08+ £

-§ 07] B 700

'% j g 600

hé 0.6 g

T 05 g 500+

= 3

5 0.4 = 4004

o 5

T 031 / g 300 /

>

< g

0.2 = 200
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Number of service requests

Fig. 11: Average utilization rate of resource in edge nodes of different methods
for random number of functions in each service request in nl1s26

o
'
S

| |—=— Baselinel

o

w

a
1

o
w
=]

o
N
al

o
N
o

0.15

Average utilization rate of link resource

o
=
o

0.05

100 150 200 250 300 350

Number of service requests

Fig. 12: Average utilization rate of link resource of different methods for
random number of functions in each service request in n11s26

for link allocation in CCOR is slightly higher than Baselines.

C. Performance of CCOR in Large-Scale Networks

Figure 9 shows the total cost of the CCOR algorithm
compared with the Baselines. When the number of services
increases, Baselinel cannot find enough resources in the edge
network to accommodate more computing requests. More
services are offloaded to the central cloud resulting in a rapidly
increased cost. CCOR consumes less cost than the Baselines
by offloading more services to the edge cloud as shown in
Fig. 10, which results in higher average utilization of node
and link resources in the edge cloud of CCOR, as shown in
Figs. 11 and 12.

Number of service requests

Fig. 13: Number of flow entries of different methods for random number of
functions in each service request in n11s26

Average path length (hops)

30 60 90 100 110 120 130 140 150 160 200 250 300 350 400
Number of service requests

Fig. 14: Average path length (hops) for link allocation in different methods
for random number of functions in each service request in n11s26

As shown in Table II, the running time of CCOR is lower
than Baselinel. The reason for this phenomenon is that the
time complexity of the Baselinel is higher than that of
CCOR. For instance, when the number of service requests is
120, the execution time of the Baselinel is about 1008.7413
milliseconds (ms), but the CCOR algorithm takes 19.9775ms.
Note that, the cost of CCOR is 40.01% lower than Baseline 1
at this point. The running time in CCOR algorithm is slightly
larger than that of Baseline2 for searching more efficient
offloading results, but the cost of Baseline2 is obviously larger
than that of CCOR.

In addition, based on the SDN deployment architecture
in [45], the flow entry inserted into edge servers is also

700000 T T T
—&— CCOR |Vr|=2
600000 +-—=— Baselinel [Vr|=2
—-— Baseline2 |Vr|=2
500000 4 |—+— CCOR |Vr|=3
—<— Baselinel [Vr|=3
1 400000 - —— Basdline2 |Vr|=3
—+—CCOR |Vr|=4
300000 4 |—=— Basdlinel |Vr|=4
—— Baseline2 [Vr|=4|

&

WA\
VNN

A\
RSN

T
50 100 150 2 250 300 350 400
Number of service requests

8

Fig. 15: Total cost of different methods with different fixed numbers of
functions in each service request in n11s26

—=— CCOR |Vr[=2
== Baselinel [Vr|=2|
—4— Baseline2 [Vr|=2|
=== CCOR |Vr|=3
8,180 4 - BaselinelVri=3
B < Basdline2|Vr|=3
>, 160 —&— CCOR |Vr|=4
—&— Basdlinel [Vrj=4
140 -~ Baseline2 |Vr|=4|

50 100 150 200 250 300 350 400
Number of service requests

Fig. 16: Number of service requests offloaded to the edge cloud of different
methods with different fixed numbers of functions in each service request in
nlls26

quantitatively evaluated in Fig. 13 where the more service
requests carried by the edge network, the more corresponding
flow entries. The average path length (hops) for link allocation
in Baselines is higher than that of CCOR as depicted in Fig.
14.

Furthermore, we conduct the performance comparison of
different algorithms for service requests with fixed 2, 3, and 4
functions, respectively. Figure 15 shows the total cost. When
the number of functions in each service request is 2, the total
cost of the CCOR and Baselines is the same. The reason is that
a simple service request is easier to be placed, and the edge
network has sufficient resources. However, when the number
of functions is 3 and 4, the total cost of the CCOR algorithm
is significantly lower than Baselines.

Figs. 16-19 demonstrate the superiority of CCOR over
Baselines in the number of service requests offloaded to the
edge cloud, node resource utilization, link resource utilization,
and the number of flow table entries, where CCOR also

[y
o
1

o
@
1

o
o
1

—=— CCOR [Vr]=2
o= Baselinel [Vr|=2|
—4— Baseline2 [Vrj=2
—<— CCOR Vr|=3
—<— Baselinel [Vr|=3
—<— Baseline2 [Vr|=3
—&— CCOR |Vr|=4
—o— Baselinel [Vr|=4]
—#— Baseline2 [Vr|=4]

o
N

Average utilization rate of node resource

o
o

T T
50 100 150 200 250 300 350 400
Number of service requests

Fig. 17: Average utilization rate of resource in edge nodes with different fixed
numbers of functions in each service request in nl11s26

0.40

50‘35 AL ; ; $ ¢ $

5 /

@ 0.30 T . T = o =

4 0

RErar

= 025 y a %

S et

g { 7

= 0.20 j AN

5 / r

& / & [~=—CCOR |Vr[2

Rois 1/ d -— Baselinel Vrj=2 |

= / —— Basgline2 Vrj=2

2 0.10 4 —5—CCOR VI3 ||

= j —<— Baselinel [Vr|=3|

T —<— Baseline2 [Vr|=3|

Z 005+ —+—CCOR|Vrz4 ||
—e— Baselinel [Vr|=4]
—#— Basdline2 |Vrl=4

0.00 T T

T
50 100 150 200 250 300 350 400
Number of service requests

Fig. 18: Average utilization rate of link resource with different fixed numbers
of functions in each service request in nl1s26

outperforms the Baselines when the number of functions in
each service request is 3 and 4. Moreover, CCOR shows
similar average path length (hops) to the Baselines as shown
in Fig. 20.

To demonstrate the difference between CCOR and Base-
lines, we evaluate the variance of link resource utilization. As
shown in Fig. 21, the link variance value of CCOR is lower
than Baselines, indicating that the loop-free path selection
method with the maximum remaining bandwidth capacity in
CCOR promotes load balancing. As a result, more service
requests can be offloaded to the edge cloud by CCOR.

Therefore, CCOR outperforms Baselinel due to the follow-
ing reasons:

e CCOR has lower time complexity. In the bipar-
tite matching based function offloading process, the
time complexity of building the bipartite graph is
O (|Vi| +|N| + |V,| - IN]), and the time complexity of
maximum weight full matching is O (|V;| - |N| - log |N|).
Therefore, the time complexity of the maximum bipar-

1000

800

600

=== CCOR V=2
—=— Basdlinel [Vr|=2|
; —4— Basdline2 [Vr|=2|

) ! —<— CCOR |Vr|=3
\ —<— Baselinel [Vr=3|
|—<— Basdline2 |Vr|=3

o |~ CCOR Vr|=4
=== Baselinel [Vr|=4|
[~ Baseline2 [Vr|=4|

T T
50 100 150 200 250 300 350 400
Number of service requests

400

200

Number of flow entries inserted in edge nodes

Fig. 19: Number of flow entries of different methods with different fixed
numbers of functions in each service request in nl11s26

n
N

CCOR Vr[=2
Baselinel [Vr|=2
Baseline2 [Vr=2
CCOR |Vr|3
Baselinel [Vr|=3

BN
® o

Basdine? V=3
CCOR Vrf4

Basdlinel [Vrl=4,
Baseline2 [\'rf=4

g
o

I
o

Loy

o ® o N

o o

Average path length (hops)

o o
[N

0.0

30 60 90 100 110 120 130 140 150 160 200 250 300 350 400
Number of service requests

Fig. 20: Average path length (hops) for link allocation with different fixed
numbers of functions in each service request in n11s26

tite matching can be expressed as O (|V;| - |N| - log |N|)
[46]. The time complexity of function offloading in
CCOR is O (|N|-log|N]), which is lower than that of
the maximum bipartite matching in Baselinel. Exper-
imentally as shown in Table II, CCOR experiences a
faster running time than Baselinel. Therefore, CCOR
experiences a faster running time than Baselinel.

o It should be noted that the function allocation results
of CCOR are equivalent to that of the Baselinel the-
oretically. However, CCOR applies the link allocation
based on the maximum remaining bandwidth, instead
of finding the shortest path between the offloaded edge
nodes for a link request in Baselinel, resulting in better
load balancing among physical links, as shown in Fig.
21. Thus, more services can be placed on the edge cloud
in CCOR with lower resource cost.

e CCOR relies on the central cloud to ensure that all the
service requests can be offloaded successfully compared
to the pure edge cloud networks in [29].

—=—CCOR
~—e— Basdlinel|
—-— Baseline2|

Variance of link resource utilization
o o o o o o o
o o Q g o o o
= N w a (<] ~
1 1 1 1 1 1

a

0.00

50 100 150 200 250 300 350 400
Number of service requests

Fig. 21: Variance of link resource utilization with fixed number of functions
in each service request in nl1s26

Overall, CCOR consumes less cost compared with Baselines
with higher resource utilization rates and comparable delay
under different scales of physical networks, varying number of
functions in service requests, and a wide range of the number
of service requests.

VI. CONCLUSION

In this paper, we investigate the cost-minimized compu-
tation offloading in collaborative edge-cloud networks by
characterizing multiple functions in each service request. The
problem is formulated mathematically and is proved to be NP-
hard. Based on the formulation, we propose a CCOR algorithm
to offload more service requests to edge cloud networks. The
service reconfiguration is applied to facilitate accepting more
online-arrived services. Different topologies and different ser-
vice request scenarios are selected to verify the effectiveness
and scalability of the CCOR algorithm. The simulation results
show that the proposed algorithm outperforms the baseline
algorithms in resource utilization and the total cost.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant 2018YFE0206800, in part by
the National Natural Science Foundation of China under Grant
U21B2005, in part by the Natural Science Foundation of China
under Grant 62025105, in part by the Chongqing Municipal
Education Commission under Grant CXQT21019, in part by
the Nature Science Foundation of Chongqing under Grant
cstc2021jcyj-msxmX0404, in part by the China Postdoctoral
Science Foundation under Grant 2021M700563, and in part
by the Chongqing Postdoctoral Funding Project under Grant
2112012727685993.

REFERENCES

[11 M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50-58, 2010.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The characteristics
of cloud computing,” in 2010 39th International Conference on Parallel
Processing Workshops, 2010, pp. 275-279.

X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin, and
D. O. Wu, “Improving cloud gaming experience through mobile edge
computing,” IEEE Wireless Communications, vol. 26, no. 4, pp. 178—
183, 2019.

L. Dong, N. Fonseca, and Z. Zhu, “Application-driven provisioning
of service function chains over heterogeneous nfv platforms,” IEEE
Transactions on Network and Service Management, vol. 18, no. 3, pp.
3037-3048, 2021.

C. Xu, J. Wang, Z. Zhu, and D. Niyato, “Energy-efficient wlans with
resource and re-association scheduling optimization,” IEEE Transactions
on Network and Service Management, vol. 16, no. 2, pp. 563-577, 2019.
X. Zhang, W. Hou, L. Guo, Q. Zhang, P. Guo, and R. Li, “Joint
optimization of latency monitoring and traffic scheduling in software
defined heterogeneous networks,” Mobile Networks and Applications,
vol. 25, pp. 102-113, 2020.

C. Yi, J. Cai, and Z. Su, “A multi-user mobile computation offloading
and transmission scheduling mechanism for delay-sensitive applica-
tions,” IEEE Transactions on Mobile Computing, vol. 19, no. 1, pp.
29-43, 2020.

Z. Ning, P. Dong, X. Wang, X. Hu, J. Liu, L. Guo, B. Hu, R. Kwok,
and V. C. M. Leung, “Partial computation offloading and adaptive task
scheduling for 5g-enabled vehicular networks,” IEEE Transactions on
Mobile Computing, vol. 21, no. 4, pp. 1319-1333, 2022.

Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, and X. Wang, “Learning-
aided computation offloading for trusted collaborative mobile edge
computing,” IEEE Transactions on Mobile Computing, vol. 19, no. 12,
pp. 2833-2849, 2020.

B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in [EEE INFOCOM 2019 - IEEE Conference on Computer Communi-
cations, 2019, pp. 1459-1467.

U. Saleem, Y. Liu, S. Jangsher, X. Tao, and Y. Li, “Latency minimization
for d2d-enabled partial computation offloading in mobile edge comput-
ing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp.
4472-4486, 2020.

W. Zhang, Y. Wen, and D. O. Wu, “Collaborative task execution in
mobile cloud computing under a stochastic wireless channel,” IEEE
Transactions on Wireless Communications, vol. 14, no. 1, pp. 81-93,
2015.

P. Han, Y. Liu, and L. Guo, “Interference-aware online multicomponent
service placement in edge cloud networks and its ai application,” /EEE
Internet of Things Journal, vol. 8, no. 13, pp. 10557-10572, 2021.
M. Amiri, H. A. Osman, S. Shirmohammadi, and M. Abdallah, “Toward
delay-efficient game-aware data centers for cloud gaming,” ACM Trans-
actions on Multimedia Computing, Communications, and Applications,
vol. 12, no. 5s, pp. 1-19, 2016.

Y. Li, Y. Deng, X.Tang, W. Cai, X. Liu, and G. Wang, “Cost-efficient
server provisioning for cloud gaming,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 14, no. 3s, pp. 1-
22, 2018.

Y. Deng, Y. Li, R. Seet, X. Tang, and W. Cai, “The server allocation
problem for session-based multiplayer cloud gaming,” IEEE Transac-
tions on Multimedia, vol. 20, no. 5, pp. 1233-1245, 2018.

S. Pandi, R. S. Schmoll, P. J. Braun, and F. H. P. Fitzek, “Demonstration
of mobile edge cloud for tactile internet using a 5g gaming application,”
in 2017 14th IEEE Annual Consumer Communications Networking
Conference (CCNC), 2017, pp. 607-608.

A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-
based service migration procedure for follow me cloud,” in 20/4 IEEE
International Conference on Communications (ICC), 2014, pp. 1350—
1354.

S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939-951, 2021.

P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, “Risk-
aware data offloading in multi-server multi-access edge computing
environment,” IEEE/ACM Transactions on Networking, vol. 28, no. 3,
pp. 1405-1418, 2020.

P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” [EEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322-2358, 2017.
M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless
Communications Letters, vol. 7, no. 3, pp. 420423, 2018.

T. Zhang and W. Chen, “Computation offloading in heterogeneous
mobile edge computing with energy harvesting,” IEEE Transactions on
Green Communications and Networking, vol. 5, no. 1, pp. 552-565,
2021.

Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial com-
putation offloading in collaborative edge computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1133-1145, 2021.
L. Li, T. Q. S. Quek, J. Ren, H. H. Yang, Z. Chen, and Y. Zhang, “An
incentive-aware job offloading control framework for multi-access edge
computing,” IEEE Transactions on Mobile Computing, vol. 20, no. 1,
pp. 63-75, 2021.

L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Transactions
on Communications, vol. 64, no. 9, pp. 37463758, 2016.

B. Yang, W. K. Chai, Z. Xu, K. V. Katsaros, and G. Pavlou, “Cost-
efficient nfv-enabled mobile edge-cloud for low latency mobile applica-
tions,” IEEE Transactions on Network and Service Management, vol. 15,
no. 1, pp. 475488, 2018.

Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao, “Task offloading with
network function requirements in a mobile edge-cloud network,” IEEE
Transactions on Mobile Computing, vol. 18, no. 11, pp. 2672-2685,
2019.

R. Durner and W. Kellerer, “Network function offloading through
classification of elephant flows,” IEEE Transactions on Network and
Service Management, vol. 17, no. 2, pp. 807-820, 2020.

M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for
computation-intensive applications in mobile cloud computing,” in 20714
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2014, pp. 352-357.

S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal
joint scheduling and cloud offloading for mobile applications,” IEEE
Transactions on Cloud Computing, vol. 7, no. 2, pp. 301-313, 2019.
U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware
joint task scheduling and resource allocation for cooperative mobile edge
computing,” IEEE Transactions on Wireless Communications, vol. 20,
no. 1, pp. 360-374, 2021.

L. Long, Z. Liu, Y. Zhou, L. Liu, J. Shi, and Q. Sun, “Delay optimized
computation offloading and resource allocation for mobile edge comput-
ing,” in 2019 IEEE 90th Vehicular Technology Conference (VIC2019-
Fall), 2019, pp. 1-5.

X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offload-
ing and resource optimization in proximate clouds,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 4, pp. 3435-3447, 2017.

T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856-868, 2019.

S. Josilo and G. Dan, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Transactions on Network-
ing, vol. 28, no. 2, pp. 667-680, 2020.

C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo, “Computation
offloading in mobile edge computing networks: A survey,” Journal of
Network and Computer Applications, vol. 202, p. 103366, 2022.

M. Deng, H. Tian, and B.Fan, “Fine-granularity based application
offloading policy in cloud-enhanced small cell networks,” in 2016 IEEE
International Conference on Communications Workshops (ICC), 2016,
pp. 638-643.

C. Singhal and S. De, Resource Allocation in Next-Generation Broad-
band Wireless Access Networks. 1GI Global, 2017.

A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network design
optimization,” IEEE/ACM Transactions on Networking, vol. 25, no. 3,
pp. 1818-1831, 2017.

A. Jarray and A. Karmouch, “Cost-efficient mapping for fault-tolerant
virtual networks,” IEEE Transactions on Computers, vol. 64, no. 3, pp.
668-681, 2015.

Z. Wang, Y. Han, T. Lin, H.Tang, and S.Ci, “Virtual network embedding
by exploiting topological information,” in 2012 IEEE Global Commu-
nications Conference (GLOBECOM), 2012, pp. 2603-2608.

S. Misra and S. Bera, “Soft-van: Mobility-aware task offloading in
software-defined vehicular network,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 2, pp. 2071-2078, 2020.

[45] S. Yang, F. Li, M. Shen, X. Chen, X. Fu, and Y. Wang, “Cloudlet
placement and task allocation in mobile edge computing,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 5853-5863, 2019.

[46] R. M. Karp, “An algorithm to solve the m x n assignment problem
in expected time o(mn log n),” Networks, vol. 10, no. 2, pp. 143-152,

1980.

=

Chuan Feng is currently pursuing the Ph.D. degree
in communication and information systems at North-
eastern University, Shenyang, China. Her research
interests are in mobile edge computing networks,
with an emphasis on resource allocation techniques
for computation offloading.

Pengchao Han received the Ph.D. degree in com-
munication and information systems at Northeastern
University, Shenyang, China. She is currently a
Postdoc research associate at The Chinese University
of Hong Kong, Shenzhen, China. Her research inter-
ests include wireless and optical networks, mobile
edge computing, federated learning, and knowledge
distillation.

Xu Zhang (Member, IEEE) received the B. Eng. de-
gree in 2014 and the Ph.D. degree in communication
and information systems in 2019 from Northeastern
University, Shenyang, China. From 2017 to 2018,
he conducted academic research with the University
of Tennessee, Knoxville, TN, USA. He is currently
a Lecturer with the School of Communication and
Information Engineering, Chongqing University of
Posts and Telecommunications, Chongqing, China.
His research interests include software-defined net-
working, optical network, resilient communication,

Yue Zong received the Ph.D. degree in communi-
cation and information systems from Northeastern
University, Shenyang, China, in 2021. From 2016
to 2017, she was a visiting student with University
of Bristol, Bristol, UK. She is currently the Postdoc
in Power China Huadong Engineering Corporation
Limited, Hangzhou, China. Her research interests in-
clude energy communication, network virtualization.

Yejun Liu (Member, IEEE) received the Ph.D.

degree in communication and information systems

from Northeastern University, Shenyang, China, in

2015. He is currently a professor in the School

- of Communication and Information Engineering,
-— Chongqing University of Posts and Telecommunica-

\) tions, China. His research interests include wireless
\

optical communication and converged fiber-wireless
. o4 access network.

Lei Guo (Member, IEEE) received the Ph.D. de-
gree from the University of Electronic Science and
Technology of China, Chengdu, China, in 2006. He
is currently a Professor with the Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China. He has authored or coauthored more than 200

traffic engineering, and network optimization. He has published over 20
technical papers in the above areas in international journals and conferences.
Dr. Zhang was the recipient of the Best Paper Award of Qshine, 2017. He is
also a member of OPTICA.

technical papers in the above areas in international
journals and conferences, such as the IEEE Transac-
tions on Communications, the IEEE Transactions on

Qihan Zhang received the M.S. in communication
and information system in the School of Computer
Science and Engineering, Northeastern University,
Shenyang, China in 2018. He is currently a Ph.D.
student of communication and information system
in Northeastern University, Shenyang, China. His
research interests include optical signal processing
and secure optical transmission system.

Wireless Communications, the IEEE/OSA Journal
of Lightwave Technology, the IEEE/OSA Journal of
Optical Communications and Networking, the IEEE GLOBECOM, and the
IEEE ICC. His current research interests include communication networks,
optical communications, and wireless communications. He is a member of
OSA, and also a Senior Member of CIC. He is currently an editor for five
international journals.

