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Abstract— Edge computing that utilizes ubiquitous edge de-
vices locating in close proximity to users is powerful for providing
QoS guaranteed computation offloading services. Towards the
limited resources of edge servers and wireless links, large services
can be split into multiple inter-connected components to be
served by multiple edge servers cooperatively. Current works on
service placement either assume unsplittable services or ignore
the geographically isolated property of edge servers. They also
ignore the interference among online services that share the
same physical nodes/links in terms of executing delay. Namely,
every service adds load to the placed nodes/links and every
increment on load of nodes/links risks delay violation of existing
services. To overcome above challenges, this paper emphasizes
on the Interference-Aware (IA) online multi-component service
placement in edge cloud networks. Firstly, the delay of tree-
like services is analyzed considering the dependency among
components, based on which the IA residual capacities of physical
nodes, links, and paths are defined and formulated theoretically.
Furthermore, we reduce the problem of multi-component service
placement to be NP-hard and transform it into an Ant colony
Optimization (ACQO) problem to obtain the near-optimal solution.
More importantly, a level traversal component ranking method
and an IA dynamic pruning method are proposed for ACO to
achieve faster convergence, interference awareness, and higher
acceptance ratio of services. Simulation results are presented to
validate the effectiveness of proposed methods. In addition, the
classic Al application of image classification is experimented to
further strength the motivation of IA investigation in practical.

Index Terms—Service placement, edge cloud, interference,
multi-component, Al application

I. INTRODUCTION

Cloud computing [1] has gained a lot of popularity for
decoupling computation- and memory-intensive tasks from
end devices to reduce the device complexity and power
consumption of end users. Also, by enabling Infrastructure
as a Service (IaaS) [2], users ranging from an individual
to an enterprise can easily deploy customized functions by
using leased resources regardless the tedious infrastructure
deployment, facilitating the emerging of abundant network
services and applications, such as cloud storage [3], cloud
Artificial Intelligence (AI) platforms [4], and could games [5].
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However, facing the ever-increasing demands of users on the
Quality of Service (QoS) of networks, such as the 1 ms delay,
10 Gbps transmission rate, and ultra-high privacy requirement
in 5G [6], [7], cloud computing that features servers geograph-
ically away from users is suffering the bottleneck of ultra-
low delay service provisioning. Thanks to the development of
high-performance and low-cost communication and computing
techniques such as the optical transmission and Graphic Pro-
cessing Units (GPUs) [8], [9], it becomes possible to leverage
the numerous and widely deployed edge devices that locate in
close proximity to users for lower-latency service provisioning,
i.e., edge computing [10], [11].

Devices that are capable of edge computing can play the
roles of edge servers. Edge cloud networks that consist of
multiple inter-connected edge servers are essential for the next
generation network that bears modern applications such as
A/VR and IoT, promoting the development of intelligence
at the edge [12], [13]. Against the limited resources of edge
servers compared with a central cloud, services that consume
high resources can be split into multiple components so as to
be served by multiple edge servers cooperatively [14].

While the prospect of placing services on edge cloud
networks is beyond doubt, the methods on multi-component
service placement on edge cloud networks for utility maxi-
mization is still under investigation. Current works on service
placement either assume unsplittable services or ignore the
geographically isolated property of edge servers by consider-
ing only one edge cloud layer. In addition, the consideration
on QoS guarantee of services is also insufficient. Specifically,
the loads of both edge servers and communication links are
influenced by each online arrived service, leaving increasing
executing delay for existing services that locate at the same
physical node or link, while computation units or data packets
of all services on each physical node or link are put into a
common queue and be executed according to First-In-First-Out
(FIFO). Namely, there exists interference among services in
terms of executing delay, which may lead to QoS violation of
services [15]. The Ant Colony Optimization (ACO) [16] is an
effective method to find the near-optimal solutions for service
placement by considering exploiting historic experiences and
learning from the environment [17]. However, conventional
ACO is executed on a fixed search graph and relies on a large
number of ants and iterations to find a good solution.

We therefore have the following open questions: 1) How
to formulate and thus avoid the interference among services
for QoS guarantee? 2) How to coordinate the placement of



multiple components in a service, while reducing the influence
to other components/services and accelerating the convergence
of ACO? To answer these questions, we make the following
main contributions in this paper.

1) We mathematically formulate the delay of tree-
structured services considering component dependencys;

2) For the first time, the Interference-Aware (IA) residual
capacities of edge servers, communication links, and
physical paths are defined and formulated theoretically
to set up guidance for relieving the interference among
services;

3) The problem of multi-component service placement with
delay guarantee is modeled and analyzed based on
the NP-hardness of Maximum Edge Weighted Clique
(MEWC) problem;

4) We propose the ACO algorithm based on level traversal
(LT) component ranking and IA dynamic pruning for
multi-component service placement to achieve interfer-
ence awareness, faster convergence and higher accep-
tance ratio of services;

5) The AI application of image classification is experi-
mented to further enhance the motivation of IA investi-
gation for practical effectiveness in load balancing and
parallel computing.

The reminder of this paper is organized as follows. The
related works are reviewed in Section II. Section III presents
the system models, based on which the problem of multi-
component service placement with delay guarantee is for-
mulated and analyzed. The IA residual capacity is defined
and derived for physical nodes, links, and paths respectively
in Section IV. Utilizing the results in Section IV, the ACO
algorithm based on LT component ranking and IA dynamic
pruning is proposed in Section V. The simulation results are
presented in Section VI. In addition, the experiments on Al
application is demonstrated in Section VII. Finally, Section
VIII concludes this paper.

II. RELATED WORKS

Related works on service placement with QoS guarantee
consider diverse service structures on different edge cloud net-
works with various delay considerations as shown in Table I.

Different delay models of services have been applied in
current works. The simplest way is to consider only processing
and/or propagation time [18], [19], [20], [21], [22], [23], [24]
such that the executing delay of a service is linear to the
allocated resources. To make the delay model more practical,
Markov Decision Process (MDP) is used in [25], [26] to
virtualize online service placement process, in which the delay
of a service is represented by the queue length. Another com-
mon way for delay analysis is by utilizing queuing systems.
Generally, the packet arrival process at a node that holds
a service can be described as a Bernoulli process and the
aggregation of multiple Bernoulli processes can be modeled
as a Poisson process [27]. While the data size of a service has
an exponential distribution, the service time of services also
follows exponential distribution for constant resource capacity.
Thus, the expected packet delay on links [28], [29] and

the expected computation delay [30] can be computed using
M/M/1 queuing model. Each node that holds multiple services
can also be characterized by M/G/1 queuing system [31], [32],
where “M” indicates that the packet arrival process follows
Poisson process and “G” means that the amount of bandwidth
required to process the packets can follow any distribution.
The M/G/n/oco queue model is used to formulate the delay
of both traditional cellular downlink/uplink transmissions and
edge cloud services [33], where the distribution of service time
for any service on any homogeneous server is assumed to
be identical and independent. However, services with above
delay models are considered unsplittable for placement in the
literature.

Generally, a service of 5G and beyond such as V/AR [34],
can be divided into multiple components. Those components
can be assigned to different servers and work in a distributed
way. Hence, services with large resource requirements can
be implemented on edge cloud networks that consists of
servers with limited computation and memory resources. The
component dependency is introduced in [35], [36], [37], [38],
specifying the time priority for executing components based
on the fact that the output of one component may be the input
of another (i.e., the output/input dependency). Each multi-
component service can be characterized using a graph [34],
[35], [36], [37], [39], [40], [41], [42], [43], [44], [45], [46],
and a graph structure can be transformed into a tree [47].
Current works on multi-component service placement deter-
mine whether or not to offload any component to edge server
from the local device aiming at minimizing total energy con-
sumption or total completion time of services. However, only
processing and propagation time are considered for service
placement and they have ignored the geographically isolated
property of edge servers. In [38], each service can be split
into multiple dependent components and be offloaded to edge
servers distributively, the scheduling delay is considered while
minimizing the total completion time. However, the queuing
delay caused by randomly arrived tasks of a service is ignored.
In [47], [48], multi-component services are assigned to edge
cloud networks. The co-located virtual machine interference
is considered while placing virtual functions to maximize
the total throughput of accepted services [48]. However, the
service delay is randomly given regardless resource allocation.

III. SYSTEM MODELS AND PROBLEM FORMULATION
A. Network models

The edge cloud network contains multiple multi-antenna
access points (APs) that follow Homogeneous Poisson Point
Process (HPPP) distribution [30]. The AP can be Small cell
Base Station (SBS), e.g., femtocell or picocell [49]. Each
SBS is connected to a co-located edge server with negligible
communication delay as shown in Fig. 1. We assume the
wireless links between SBS pairs use frequency orthogonal
channels. All SBSs and edge servers are controlled by a
Software Defined Network (SDN) controller. For ease of
presentation, we use edge node to represent both SBSs and
edge servers.

Important notations are shown in Table II. Let N and £
denote the set of edge nodes and wireless links respectively.



TABLE I: Related works

TABLE II: Important notations

Ref. Multi-| Multi-| Delay consideration Remark Symbol(s) Description
comp-| edge N, L Set of edge nodes and wireless links
onent | servery? Ch The computation capacity of node n
ser- H The bandwidth of wireless links
vice? . _ pirans The maximum transmission power of SBSs
(18], N N Only processing Minimize total ) The path loss of wireless link [
(191, time energy consumption No The power density of white noise
(201, under delay R, The data rate of wireless link [
[21] i constraints K Set of services
[22], N Y Only processing - G The task graph of the service indexed by k
[23] time _ . Vi, Ek Set of components and edges in G,
(24] N Y Only processing / Maximize profit Ck.i The computation resource requirement of component
propagation time under delay ’ iV,
constraints . by j The data size to be transmitted on edge j € &
[25] N Y MDP Power-delay tradeoff - ,
Nk The arrival rate of Gy,
[26] N Y MDP - - -
5 N Y MM M i dp The delay requirement of Gy,
(28], ™/ 1nimize total Ty The duration of G,
[29] resource cost under
. Bi.m The mth branch of Gy,
delay constraints d‘} The del F =Y
B30] | N Y M/M/1T Minimize delay ki © defay of component 2 € Vi
under energy budgets dy j The delay of edge j € &
[31] N Y M/G/1 Power-delay tradeoff dﬁ The delay of branch m € Gy
[32] N Y M/G/1 Minimize the Ak, in Binary variable taking 1 if component ¢ € Vy, is
maximal packet loss assigned to edge server n, and O otherwise
probability under Pk,j,1 Binary variable taking 1 if edge j € & is assigned to
delay violation wireless link [, and O otherwise
probability An The arrival rate of computation units on node n
constraints W, Expected queuing delay of components on node n
[33] N N M/G/n/oc? - dy . The delay of serving ¢ € Vi on node n
[35], Y N Only processing / Component A The arrival rate of packets on wireless link [
[36] propagation time dppeqdency, I Average packet size
rnuu;nl'ze total 01 The load factor of wireless link [
completion time w] Expected queuing delay of packets on link {
[37] Y N - Component — T
X2 Expected second moment of service time of packets
dependency, ; - - - :
minimize total d, J The delay of serving j € £ on wireless link [
completion time In Set of links that flow into node n
[34], Y N B N O Set of links that flow out of node n
[39], Js The source component of edge j
[40] ID The destination component of edge j
[41] Y N Only processing / Minimize weighted p(n,n), The shortest path and link from n to n’
propagation time time and energy cost l(n,n')
[42] Y N Only pro_cessipg / - ss’n,, aﬁ,n” The MAAD of p (n,n’), I (n,n’), and n
propagation time €
T T 0 n
[43], Y N Only processing / Mlnlml'ze tqtal F The total queuing delay of p (n, n’)
[44] propagation time completion time T . — 5 5
[45] Y N Only processing / Minimize total Vo The 7-1A residual capacity of p (n,n'), L (n,n), and
propagation time energy consumption Yy nn’ Ynin n
[46] Y - - Tree structure My i The candidate domain of component ¢ € Vi
[38] Y Y Processing / Component [ The search graph of ACO for G,
. : 7
propagation time d.eper}dency, T The heuristic factor of the edge from n € My, ; to
and scheduling time minimize total 42 n €M inG ’
completion time — ki k
[47] Y Y Randomly given Minimize total G54t The pheromone/of the edge_ from n € My ; to
energy consumption n' € My i in Gy
[48] Y Y Randomly given Interference q:l;fl The transition probability from n € My, ; to
' n' € My, ;s in G,
] ) ) € Parameter in e-greedy algorithm
The computation capacity of the edge server indexed by 3 The evaporation coefficient of pheromone trail
n e N is represented by C, CPU cycles/s. Denote H the a,d The importance of pheromone and heuristic factors
. . . A Th t of ph laid b t
total spectrum width of a wireless link and let p!”97$ be the TS The is:ﬁ;lzmonfmzzné?rier?ﬁOHZ 2? Zrclo
maximum transmitting power of a SBS. The Signal-to-Noise N Number of ants in each iteration

Ratio (SNR) of link [ is 6, = ¢pirans /(NoH) where ¢,
is the path loss and Ny denotes the power density of white
noise. According to Shannon’s formula, the data rate of [ is
R; = H log,(1+ 0;) bps. The executing units of computation
and communication resources are a CPU cycle and a data
packet respectively. All computation (communication) units
on an edge server (wireless link) are put into a common
queue and be executed according to First-In-First-Out (FIFO)
disregarding which services they belong to.

The set of services is denoted by /. Any service k € K
can be described using a call graph Gy = {Vi, &} , where
Vi is the set of components and & is the set of edges.
Each service G, contains multiple homogeneous tasks with
the arrival rate of 7 in a duration of 7j. The computation
resource requirement of the ¢th component in Vi is ¢ ; in
the unit of CPU cycle and the data size to be transmitted on
the edge indexed by j is denoted by by ; bits. Note that the
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data size of the upstream and downstream transmissions of a
bidirectional edge in a service can be asymmetric.

The delay requirement of Gy, is dy, restricting the total time
for completing all components in the service. It is meaningful
to mention that each edge in a service represents a dependency
between its start and end components. Taking the dependencies
among components into account and based on the fact that any
call graph of a service can be organized using a service tree
[50], we also model any service k € K as G, = {Bk,m, Ym}
where ) ., indicates the mth branch in Gy. Branches of a
service G have following properties,

1) The root of a tree corresponds to the input of a service;

2) Each branch in G contains a set of continuous com-
ponents and edges, constructing a path from the root of
G, to one of its leaf components;

3) Each branch in G is a path of dependent components,
which should be executed in sequence due to the out-
put/input dependency;

4) The number of branches of a service equals to the
number of leaf components in the service tree;

5) Different components on different branches can be exe-
cuted simultaneously;

Therefore, the delay of a service Gy, is equivalent to the largest
accumulated delay of branches on Gy.

Taking the service tree (for the kth service without loss
of generality) in Fig. 1 for example, let dy,, d;, and
dﬁm denote the delay of component i, edge j, and branch
m respectively. There are three branches in the service,
that is, Sx1 = {v1 «— v2}, B2 = {v1 ¢— v3 +— v4}
and B3 = {v1 ¢— v3 +— vs} with respective delay of
diy = dfy +dfy +dP, + d,, diy = A+ dig +
dE, + dY, + dE S+ dPg + dY, and dP, = Y, +dE, +
df, +dY s + dfy + dPg + dY ;. Thus, the total delay is
max {dﬁ Ly, dy; 3}. Therefore, the delay constraint for this

service is max{dkBl,dsz,dkBg} < dj.

B. Delay models

Based on the models of networks and services, we formu-
late the delay of components and edges in this section. Let
ay,i,n denote the binary variable of component assignment,
indicating if component ¢ in service k is placed onto the edge
node n or not. Similarly, ¢y, j; is the binary variable for edge

assignment, taking 1 if edge j in service k traverses wireless
link ! and O otherwise. Let a and ¢ be the set of ay ;, and
¢k, 5,1 Tespectively. The arrival rates of computation units (i.e.,
CPU cycles) of edge node n € A and data packets of wireless
link [ € £ are formulated as A\, = >, Zievk QkinChi Mk
and \; = 3, o Zjesk ki1 - bi,j - M/ F respectively, where
F' denotes the average packet size.

1) Delay of service components: All components that are
placed on one edge node share the computation resources of
the edge server. According to the Little’s formula for M/M/1
queuing system [30], for edge server n € N with computation
unit arrival rate \,, and service rate C,,, the expected queuing
delay of computation units on edge server n is

1
Wn = E ey

The delay of a component (e.g., component ¢ of service k)
on edge server n includes the expected queuing delay and the
processing delay, i.e.,

Zﬂj = Qk,in (wn + Ck,i/on) . (2)
2) Delay of service edges: For wireless links, the packet
arrival process follows Poisson distribution and the service
process follows any distribution. According to Pollaczek-
Khinchin (P-K) formula of M/G/1 queuing system [51], the
expected queuing delay of data packets on any link [ € L is
AN X2 X2R? X2R,
2(1—p) 2F (R —\NF) 2F
where )\; is the arrival rate of packets on link [ and p; is
the load factor of link [ defined by the ratio of \; over the
packet service rate of R;/F. X2 denotes the second moment
of service time for data packets.
The delay of any edge j in G on a specific link ! includes
the expected packet queuing delay and the data transmitting
delay, that is,

3)

w; =

dj, ;= pr.ju (wi + by j/Ry) . (4)

Obviously, the executing delay of a component or an edge in
a service depends on the load of the placed infrastructure (i.e.,
edge servers and wireless links). Hence, newly arrived services
that increase the load of edge servers and wireless links lead to
higher queuing delay of services. Namely, every increment on
load of nodes/links risks delay violation of existing services.
Thus, we emphasize the interference among services that share
the resources (i.e., computation and bandwidth) of the same
physical infrastructure, which is different from the conven-
tional co-channel interference in wireless networks where one
user on the same channel decreases the transmitting rate of
another by adding noise. To the best of our knowledge, this
is the first work investigating the interference among services
in edge cloud networks from the above perspective for both
computation and communication resources.

C. Problem formulation

The objective of service placement is to maximize overall
resource-related utility defined as

Ula, @) =2 Tunk (22 220 € @hsiin” Chsi

5
+ Zj 200 Prl bkyj) ) ®



where ¢ and ¢ indicate the importance of computation and
communication resources respectively. Note that the utility
function can be extended to any resource-dependent revenue
and cost functions such as infrastructure provider revenue, total
resource cost, energy consumption and momentary budget.
The problem of service placement is formulated as P1.
P1:
max U (a,p). (6)

s.t.
> hin S LYK EK i€V, ™)
neN

Yier, Phil = Dieo, Pril = “Okjsnt Ghjpn: (g
VkeK,je&,neN,

S prju SLYkEK,jEEnEN, ©)
lel,
> orji <LVEEK,jEEnEN, (10)
€O,

Cp— X >0,VneN,
RZ/F—Al >0,vVieL,

max {Zi,je,@kmL (Zne./\/' di i+ er dﬁw) VBrm € Gk}

(1)
(12)

<d,Vk € K,
(13)
agin =10,1} ,Vk e K,i € Vg,n e N, (14)
ki1 =10,1} ,Vk e K,j € &, l € L. (15)

Solving the problem P1 is equivalent to find the placement
results of components (i.e., variables a) and edges (i.e.,
variables ) with the maximum utility. Constraint (7) specifies
that every component in a service should be assigned to one
and only one edge node. The flow conservation in (8) aims
to assign each edge in a service to a continuous and loop-
free physical path between the placed edge nodes of its start
and end components. Constraints (9) and (10) specify that
the edge assignment is not splittable, namely one edge to
one physical path. The computation and bandwidth resource
capacity constraints of edge server and wireless links are
formulated in (11) and (12) respectively. The delay constraints
of services are shown in (13), restricting the delay of each
branch to be lower than dj. All placement variables are
constrained to be binary as in (14) and (15).

D. Problem analysis

We have following Lemmas and Theorem.

Lemma 1. Constraints (7) - (15) are equivalent to a Boolean
Satisfaction (SAT) problem.

Proof. See Appendix-A. O
Based on Lemma 1, we have Lemma 2 as follows.

Lemma 2. The problem P1 can be reduced to Maximum Edge
Weighted Clique (MEWC) problem.

Proof. See Appendix-B. O

Theorem 1. The problem PI is NP-hard.

Proof. Theorem 1 can be proved based on Lemma 2 as in
Appendix-C. O

IV. INTERFERENCE-AWARE (IA) RESIDUAL CAPACITY

As we have analyzed, Eqs. (2) and (4) indicate that delay
of a(n) component(edge) depends on \,(\;) due to C,(R;)
is constant for given resource capacity. In this sense, services
influence each other in terms of changing loads of physical
nodes and links. Intuitively, we can transform the delay
constraint of a service into the IA residual capacities of the
placed physical paths and nodes. The interference that future
services will leave on the existing services can be avoided
through using the IA residual capacity for placement instead
of the general residual capacity. The shortest paths are always
used for placing service edges to improve the probability of
delay satisfaction.

In order to calculate the IA residual capacity, we first
introduce the Maximum Allowable Additional Delay (MAAD)
that a path, link, or server can tolerate. Since judging the delay
satisfaction of a service is based on the executing delay of
branches on the service as in (13), while a physical path,
link, or node only serves a part of a branch, the MAAD
of a path is defined as the minimum value of allowable
additional delays of all service edges on the path such that the
belonged branches (of one or multiple services) of the edges
will experience acceptable delay. The MAAD of a physical
link or a server is obtained from its belonged paths. We define
the IA residual capacity for a physical path, link, or node as the
maximum resources that the path, link, or node can provide for
future services, such that the delay requirements of its existing
services will not be violated.

A. IA residual capacity of physical path

As each edge in a service is placed onto a physical path
p(n,n’), i.e., the shortest path from node n to n’, the MAAD
of p (n,n’), denoted by Ef_’n/, can be computed as the minimal

residual delay of all branches it serves,

€ = WD {dk ~ 2ijeBum (ZnEN di i+ ier di,j) :
Vk € K, Bk.m € Gk, 3j € Bi.m is placed top (n,n')}.
(16)

Definition 1. The n-IA residual capacity of path p (n,n’) is
defined as the maximum volume of communication data size
1/71; nns Jrom a service with the task arrival rate of 1, that

can be added to the path, such that the delay requirements of
existing services on the path are not violated.

Remark 1. The definition of IA residual capacity of a path
(also for links and nodes) is service-wise, relating with the
task arrival rate of a newly arrived service, i.e., 1.

Based on ¢}, ./, v}, . can be obtained using the binary
search method and then take the minimum compared with the

7-IA residual capacities of all links and end nodes on p (n,n’)



Algorithm 1: BinarySearch (ek .., 1)

1 Construct K’ by gathering all services placed in the system;
2 pMax

= DokeK! 2jeg;, Phiil by -%) /n, V1 € p(n,n')}’
VPR 4 0, vprey < O;
3 170 < Tfn,;
4 U (,Urriax _,’_,Umin) /2;
5 while [v — vprey| < 0.001 do
6 N+ N +v-n/FNlEp(n,n);
7
8
9

Obtain TP from (18) based on the new A\;, VI € p (n,n’);
1f7' ,>TO+5 , then
| vmax — v
10 else
11 \ MR
12 Uprev < U; '
13 v (vmax + vmm) /2;
14 Return v;

for the purpose of being compatible with the IA results of links
and servers,

in’n’ = min {BinarySearch ( n’n,,n) ,
min {v}, ,,Vz,2 e N,I(z,2') ep(n,n')}, (17)
minz éVZ,Vz eN,(z=norz=n/)}},
where 1/7[7’ gy is the n-IA residual capacity of the link from n
ton’. Let 7, be the total queuing delay of p (n, n’) including

queuing delay of source and destination nodes as well as all
links on the path, i.e.,

P
Tpn = Wn + g Wy + Wy
lep(n,n’)

(18)

The procedure BinarySearch ( nn’> 7]) is to find a maximum
volume of communication data size to be added on all links
of p (n,n’) without exceeding the delay constraint of ¥, +
Tf_ n- As shown in Algorithm 1, the maximal and minimal
values of 7)-IA residual capacity of p (n,n’) are initialized to
be the minimal data size for links on p (n,n’) with satisfied
(12) and 0, respectively. We find the value by calculating the
delay of the center of search space and narrow the search space
to be half after each calculation.

B. IA residual capacity of wireless link

Generally a physical link may belong to multiple paths, thus
the MAAD of a link from n to n’, i.e., [ (n,n’), is defined to
guarantee the MAAD of all belonged paths,

eb o =min{el, V2,2 € N,l(n,n') € p(z,2))} . (19)

When it is clear from the context, we use [ for short of [ (n,n’).

Definition 2. The n-IA residual capacity of link 1 (n,n’) is
defined as the maximum volume of communication data size
#’n’n,, from a service with the task arrival rate of n, that

can be added to the link, such that the delay requirement of
existing services are not violated, given by (20) and (21),

X2R? X?R, 4 Uy ot
2F(Rl (A1F+y” . 17)) Ry (20)
S En,n’ + wi,
Ri/F — (N + v m/F) > 0. 1)

Obviously, (20) is equivalent to a e v T wy constrained
link delay in (4) with additional communication load of l/n non
for a service with the task arrlval rate of 7. Considering the
additional transmitting delay of 1/17 n,ne 10 (20) is necessary in
case the newly arrived service is a part of an existing service,
i.e., placing a new component for existing services. Eq. (21)
reflects the maximum link capacity constraint in (12) while
considering Vn n.n- Based on above deﬁnition, we can derive

, in (17).

v} e 1o support the calculation of v,

Theorem 2. The n-IA residual capacity of 1 (n,n') is

L

o,y = INAX {@l — /12, O} , (22)
where
&) = (e nn';wl) X:}fjl 4+ R 2;\,F,
0 = R ((egﬁn,erl)Rl L X°RE Rl_)\lp>2.
2F7 2 aF 27
Proof. See Appendix-D. O

C. IA residual capacity of edge server

Similarly with € the MAAD of edge node n can be

formulated as

nn”

en <min{el V2,2 €N ,(n=zorn=2)}. (23)

Note that only the delay of start and end nodes is considered
in the total delay of a path. Therefore, ¢V is only influenced

by the paths starting from or ending at n.

Definition 3. The n-IA residual capacity of node n is defined
as the maximum volume of computation resource V,]]\fn, from a
service with the task arrival rate of n, that can be added to
the node, such that the delay requirements of existing services
are not violated, given by (24) and (25),

1 Vin
7,n < s 24
C, ()\ ernn 77)+ Cn 6 tw @4
Cn— (An+ v, m) > 0. (25)

Similarly, (24) and (25) are variants of (2) and (11) respec-
tively.

Theorem 3. The n-IA residual capacity of node n is

v, = max {@n - \/Qn,O} , (26)
where
_ (e wn)Cn | cyon,
b, = D) + 2
C,V (eN+wa)Cn o, 2
-Qn = 7;‘] —+ ( 5 — "217 ") .
Proof. See Appendix-E. O
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Fig. 2: Comparison of the number of connectivity constraints and induced
connectivity constraints of different component ranking methods. (a) Example
service tree; (b) Level traversal; (c) Page rank; (d) Random rank

V. ACO ALGORITHM BASED ON LT COMPONENT
RANKING AND IA DYNAMIC PRUNING

The near-optimal solution of IA service placement can be
achieved using ACO on a constructed search graph. However,
directly searching the fixed graph takes a long time to converge
and may break off the delay constraints. Thus, we propose a
new component ranking method to accelerate ant search and an
IA pruning procedure to dynamically prune the search graph,
making sure the delay constraints of existing services will not
be violated. The whole algorithm is described in Algorithm 2.

A. Component ranking based on LT

Component ranking, based on which components are as-
signed in order, is of vital importance for improving the pos-
sibility of successful placement due to the influences among
components in aspects of not only delay requirements but
also resource constraints. Assignment of a component should
take both of its resource requirement and the connectivity
with other already assigned components into account, the later
helps to stimulate edge placement. As services are organized
in tree structure, we propose to use the order of components
in the LT of a service tree for component ranking (line
3 in Algorithm 2). We define the connectivity constraint
while assigning a component to describe the assignment of
an edge between one component to be assigned with another
one already assigned. The induced connectivity constraint is
defined as the assignment of an edge between one component
to be assigned with another one that is not assigned.

Level traversal order signifies that components are assigned
from the root of a service to its leafs. In this way, there is a
high probability that edges connected to a component are dis-
tributed to the connectivity constraints of different components
and surely the edges will become both connectivity constraints
and induced connectivity constraints (not either connectivity
constraints or induced connectivity constraints) of itself. Thus,
both the maximum number of connectivity constraints and
induced connectivity constraints of components are reduced.
Therefore it becomes easier to find assignment results.

For example in Fig. 2, the assignment orders of com-
ponents in service (a) using different methods are depicted
in (b), (c), and (d). For each component, the number of
connectivity constraints and induced connectivity constraints

Fig. 3: ACO search graph constructing.

to others is marked in the parentheses above the component.
In the proposed component ranking method based on LT,
components are assigned in the order of their depths in the
service tree. By the definition of connectivity constraints and
induced connectivity constraint, the edge between v; and vy
is a connectivity constraint for component v, because the
assignment of vy is completed while assigning v4. The edges
v4—vs and v4 —vg are induced connectivity constraints for v4.
Therefore, the maximum number of connectivity constraints
and induced connectivity constraints of components in the
service in (a) is (1,2) while using LT order. The results of
Page rank [52], [53] and a random rank are shown in (c) and
(d), whose maximum numbers of connectivity constraints and
induced connectivity constraints of components are (1,3) and
(2,2) respectively. Apparently component ranking based on
LT can alleviate the influence among components.

B. Search graph constructing

For each service Gy, a search graph Gy, is constructed for
ACO (lines 4 - 9 in Algorithm 2) as shown in Fig. 3.
Firstly, the candidate domain of each component indexed by
i in Vg, i.e., My, ;, is created by finding the edge nodes with
satisfied required computation resources (line 2). Then, we
fully connect the candidate domains sequentially according to
component ranking results. Two auxiliary vertice S and D
are introduced as the source and destination of ant search.
The path length calculated in physical network of any pair of
connected nodes in Gy, is set as the edge weight. Weights of
edges beside S and D in Gy, are set to be 1. Apparently, the
assignment of components is determined if a trail from S to D
is found and any edge is placed to the shortest physical path
between the placed edge nodes of its start and end components.

C. Single ant searching

Tk/le heuristic factor of an edge in G is formulated as

?7;7 = 1/the path length of p(n,n’) for n € My, and
n’ € My, (line 11 in Algorithm 2). The pheromone trail
between any two vertice n € My, and n’ € My, in
Gk, denoted by ~;' ;7’, refers to the desirability of placing
component ¢’ onto édge node n’ after component ¢ is placed
to node n. The initial value of pheromone trail on each edge
is identical when constructing Gj. After eacb iteration, th§
pheromone on each trail evaporates as ;'3 =(1 — &) ;")
where £ is the evaporation coefficient (line 15 in Algorithm
2). Meanwhile, any ant lays the pheromone on the edges along



Algorithm 2: ACO for Online Service Placement

Algorithm 3: TA_Pruning

Input: G, N, L

Output: a, ¢
1 for k € K do
2 Find My, ;,Vi € Vyi;
3 Rank components in Vj, using LT as V'
4 Construct ACO search graph Gj:
5 Add two auxiliary nodes S and D;
6 Link S to n,Vn € My v/, e with weight 1;
7 forzevkandzivsz|do
8 Link n,Vn € My, ; to n/,Vn’ € My, ;41 and set its
weight as the path length (in hops) of I (n,n’);
9 Link n,Vn € My, v, Wl to D with weight 1;
10 ACO search: '
11 Compute the heuristic factor for each edge in Gy;
12 iter < 1;
13 for iter < N2 do
14 ant < 1;
15 Evaporate pheromone;
16 for ant < Nt do
17 Gi(0) < Gis
18 Initialize its start position as S, ¢ < 0;
19 for i < |V;|+1do
20 Choose next position using e-greedy algorithm;
21 Update ”nkm’ vnk e and v e
Vn,n' e N accordmg to (17) and Theorems 2
and 3;
2 Gr(i+ 1) « IA_pruning(Gg (4));
23 Update pheromone trails;
24 Extract a, ¢ for G from the travel path of the ant;
25 Calculate U (a, ¢);
26 Save the a, ¢ with the maximum U (a, ¢);
27 iter < iter + 1, ant < ant + 1.

n, ’IL n 71

its trail as ;; + & - A where A is the amount of
pheromone 1a1d by the ant (line 23 in Algorithm 2). Here,
we use the utility function for measuring the effectiveness of
the search solution of an ant and define A as A = U (a, ¢).
Higher utility leads to higher pheromone laid by an ant.
Based on the heuristic factor and pheromone factor, the
transition probability from n € My ; to n’ € My i/ is

N\ O N0
n,n n,n
(%‘,2' ) (‘71‘,%' )
27

E n,n’’ o n,n'’ 4
neMy, o \ Vi R

where «,d reflect the importance of pheromone factor and
heuristic factor respectively. We use e-greedy algorithm for
ants to choose next position (line 20 in Algorithm 2). It
specifies that each ant selects vertex along the edge that has
the largest transition probability in (27) with the probability
of e. Otherwise, with the probability of 1 — ¢, an ant randomly
choose the next position in G to prevent trapping in local
optimum of ACO.

n,n'
4 =

D. Dynamic pruning based on IA residual capacity

The IA_Pruning procedure is described in Algorithm 3 to
tackle the interference among components as well as edges
(line 22 in Algorithm 2). The edge between components h and
I is represented by j(h,h'). Every time an ant moves a step,
two conditions are checked on the rest of search graph (lines
3 and 7 in Algorithm 3). (1) If the IA residual capacities of
the rest candidate nodes and paths are enough for existing
services? (2) If the rest candidate nodes satisfy the delay
requirements of the task? The candidate nodes that violate

Input: 7, G (7)
Output: Gy (i + 1)
1 for h € V'y, and h > i do
2 for n € My 1 do
3 if ¢, Jh > ’U
then
‘ Delete n from Gy (i);
for ' € V'k and h' <i do
for n’ € My, 5 do
if bk i (h,h') > ’U

e ,n OF (13) is not satisfied when ap p ., =1

RNV NS

om0 (13) is not satisfied

when ¢k,j(h,h’),l(n,n’) =1 then
8 ‘ Delete n from Gy (i);
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Fig. 4: Distributed framework for computing IA residual capacity

either above conditions are removed temporarily for current
ant resulting in a new search graph Gy (i + 1) for the search
of (i 4+ 1)th step (lines 4 and 8 in Algorithm 3). Any ant
should move according to its dynamically pruned graph and
once a feasible path is found, the pheromone factors of edges
along the trail will be updated [17].

E. Overall distributed framework

For ease of accelerating calculation of TA residual capacity,
the distributed framework is proposed as in Fig. 4. The SDN
controller holds the full picture of physical infrastructure
and is responsible for executing ACO. The calculation of
queuing delay and IA residual capacities of nodes and links
are decoupled from SDN controller to respective physical
nodes. The computing results are uploaded to the controller
for calculating IA residual capacities of paths.

E. Complexity analysis

For any service k with |Vj| components, the time complex-
ity of LT ranking is O (|Vk|). The complexity of LT is the
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same as random ranking (RR), and higher than computation
resource ranking (CR), i.e., O (|Vj|log [V]|) using quick sort,
and Page rank (PR) [54], i.e., O (|Vk|2 . T) where T denotes
the number of iterations taking 7' = log |Vj| in general.

The ACO takes O (|Vi| - N . NP22X) gteps in to-
tal for searching optimal path of each service Gj. The
IA_Pruning costs O (|Vk\2 . |2) steps where [N indi-
cates the maximum number of candidate nodes in My, ;.
It takes O (|N ) steps to find the shortest paths us-

ing Dijkstra. Overall, the time complexity of the proposed
ACO based on LT component ranking and IA dynamic

pruning is O (|Vk| + Vil NP - Nant . Nmax 4 |N|2) =
0 kaﬁ NTP).

he existing method based on general resource capacity
(GRC) [55] costs O (|Vi|log|Vk|) steps for component rank-
ing, O (|Vk| IV |2> steps for calculating GRC for all compo-

nents and O <|./\/ |2> steps to find the shortest paths. Therefore,
its total complexity is O (|Vk| log [Vi| + [Ve| INT? + \N|2) =
O (|Vk| IV |2) The existing method based on Page rank costs

O (INT - 1og IV]), O ([N']10g |N']), and O (IN']") steps for
calculating Page rank values, ranking these values in the
decreasing order and finding the shortest paths, respectively.
Its time complexity is then O (|N I -log |N|). However, the
method based on GRC neglects the influence among online
services and the method based on Page rank further ignores the
features of services such as service architecture and resource
requirements. The proposed ACO based on LT component
ranking and IA dynamic pruning takes the interference and
features of services into account with linearly additional time
complexity with respect to O (\N |2) based on the fact that

there exists |A| >> [V| in practical, while the performance
has been improved remarkably as described in Section VI-C.

VI. SIMULATION RESULTS
A. Parameter settings and comparative approaches

In the simulation, we generate 34 SBSs, each of which
is equipped with an edge server over a 200 x 200 m? area
according to HPPP process with the density of 10~3 [30]. The

computation capacity of each edge server is 10 Gigacycles/s.
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Fig. 6: Average power consumption of ACO using different component
ranking methods

The transmission power of an SBS is 30dBm. The path loss
of wireless links over millimeter wave is 157.44 32logy((dis)
where dis is the link length in km. The power density of white
noise is Ny = —174.0 dBm/Hz. The spectrum width for each
wireless link is 20MHz. Services arrive according to Poisson
distribution. The computation requirements of components and
the transmitting data size of edges follow uniform distributions
in [100, 1000] Megacycles and [0.5, 1] Mbits respectively. The
task arrival rate of each service is in [1, 5] uniformly and the
average duration of services is 10 according to exponential
distribution. The delay requirements of services are uniformly
between [0.1, 0.5]s. Moreover, we set F' = 20 Bytes and
X2 = 1.137 (,us)Q. For ACO, there are ¢ = 0.6, £ = 0.1,
a=2,6=23, and N = 5. In all simulations, totally 100
services are generated for the placement.

We use power consumption as the objective function by
minimizing the total power consumption P of services,

P =3 e viie + Xkex Tk
[Zievk Chyi - DY+ Y jee, Dater Phad Ok, /R -pff{gfs]
(28)
where pe™P = 8.2 x 10~? W/cycle [30] denotes the power
consumption of per CPU cycle and p{7#™s = 14.9 W [56],
[57] is the power of idle SBSs without data transmission. The
power consumption is equivalent to the utility function in (5)
with ¢ = —p®™P and ¢ = —plTans /R,.
The proposed ACO algorithm based on LT component
ranking and IA dynamic pruning (labeled by ACO_LT_IA)
is compared with following approaches:

1) ACO_PR_IA: Use Page rank instead of LT for compo-
nent ranking in the proposed ACO framework;
ACO_CR_IA: Rank components in the decreasing order
of their computation resource requirements instead of LT
in the proposed ACO framework;

ACO_RR_IA: Replace LT with random ranking order in
the proposed algorithm;

ACO_LT: The proposed ACO algorithm based on LT
component ranking but without IA dynamic pruning;
Baseline_GRC [55]: First assign all components in a ser-
vice to the physical nodes with higher general resource
capacity, which is a combination of node computation
capacity and sum of bandwidth capacities on its neigh-
bor links, and then assign edges to the shortest paths.

2)

3)
4)

5)
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6) Baseline_ PR [58]: First assign all components in a
service using Page rank, and then assign edges to the
shortest paths.

We compare the proposed algorithm with others on the
average power consumption defined as the ratio of total
consuming power in (28) over all accepted services and the
acceptance ratio which is defined as the ratio of successfully
placed services over all services.

B. Performance of component ranking based on LT

Varying the number of components in a service (i.e.,
service size) uniformly in [2, 8], we evaluate our proposed
ACO_LT_IA in comparison with other component ranking
methods as shown in Figs. 5 and 6. It can be observed that
ACO_LT_IA converges faster than other methods because LT
promotes each ant finding feasible placement path due to less
(induced) connectivity constraints. There is a higher proba-
bility of failed search in other three methods. Specifically,
Page rank prefers to place a component that requires more
resources and has more connections with other components
in priority. However, a large number of induced connectivity
constraints is generated, i.e., the maximum number of induced
connectivity constraints is the same as the largest component
degree. ACO_CR_IA and ACO_RR_IA produce a high de-
gree of randomness regardless the edges among components,
resulting in lower convergence rate. Moreover, higher service
acceptance ratio and lower average power consumption are
achieved in ACO_LT IA.
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Fig. 9: Acceptance ratio of different approaches under different service arrival
rates
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service arrival rates

C. Performance of ACO based on IA dynamic pruning

The proposed ACO_LT_IA is also evaluated compared with
other service placement approaches when the service arrival
rate is 1 (not the arrival rate of tasks for a specific service). The
acceptance ratio and average power consumption of different
approaches under different service sizes are demonstrated in
Figs. 7 and 8. The acceptance ratio decreases with the increase
of service size on account that complex services are hard to
place. However, the average power consumption grows up
because the power consumed by each service is higher for
large services. Similarly, ACO_LT_IA outperforms others for
consuming lower average power per service and accepting
more services. The superiority of ACO_LT_IA can be further
validated while varying system load. When the arrival rate of
services varies from 1 to 10 and the service size distributes
uniformly in [2,8], the acceptance ratio drops down and the
average power consumption grows up as shown in Figs. 9
and 10. For all arrival rates, ACO_LT_IA achieves the high-
est acceptance ratio and lowest average power consumption.
Overall, the proposed ACO_LT_IA outperforms all the other
comparative approaches in a wide range of service sizes and
service arrival rates.

VII. APPLICATION

In this section, we use the multi-class image classification
as an example to enhance the motivation of TA investigation
and show its practical effectiveness.
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A. Multi-class image classification based on IA mechanism

Given a training dataset A = {(z;, yl)}ZX:1 with an unknown
distribution over instances x; and labels y; € {1,2,--- ,Y},
where X and Y are the number of data samples in A and
total number of possible output classes, respectively. The
goal of multi-class classification [59] is to learn a predictor
f +xi — y;, Vi so as to minimize the expected loss for a
random instance and label, i.e., min B, ..y [L (yi, f (2:))].
The loss function L means for label y; and prediction vector
f(zi), L(yi, f (x;)) is the loss incurred for predicting f (x;)
when the true label is y;. Generally, the cross-entropy between
y; and f(z;) is used as the loss function of multi-class
classification. The predictor f is represented by a neural
network with multiple layers, which is trained using machine
learning to minimize L. The Stochastic Gradient Descent
(SGD) is used for updating parameters in f. Thus, the training
of f consists of two steps in each iteration, the forward process
for predicting y; of input x; and the back-propagation for
parameter updating.

Allowing the placement of a service to more than one server
is beneficial for implementing artificial intelligence services to
edge servers, whose resource (e.g., computation and memory)
capacity is limited compared with a central cloud. For an
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Fig. 13: Illustration of one iteration in multi-class classification; (a) The
service is placed as in Fig. 12 (c); (b) The service is placed as in Fig. 12 (d)

Al service like image classification, its neural network can
be split into multiple components, each of which contains
several continuous neural layers [60], [61]. Communication
data among the components includes the set of parameters
that connect different components in the forward process and
the gradients during the back-propagation as demonstrated in
Fig. 11.

Assume there are two classification services and three
connected edge servers as shown in Fig. 12, the benefits of TA
mechanism are twofolds:

1) Load balancing: Assume the computation capacity of
each server is enough for holding two services, tradi-
tional approaches tend to assign both of the two services
to the same server with larger GRC [55] or Page rank
[58] since the server is connected to other two servers,
as depicted in Fig. 12 (a). However, the IA mechanism
prefers to assign the two services to different servers to
avoid their interference when the communication delay
is tolerable as shown in Fig. 12 (b);

2) Parallel computing: Traditional approaches incline to
assign all components to the same server to reduce
communication cost and delay as shown in Fig. 12 (c).
However, the TA mechanism would like to distribute
its components among servers to reduce computation
delay leveraging additional communication resources
as depicted in Fig. 12 (d). Surprisingly, the parallel
computing resulting from distributed placement of a
service can further accelerate service execution.

Illustration of the effectiveness of parallel computing is
depicted in Fig. 13. Even though the time for executing one
iteration of a multi-class classification service on two edge
servers is longer than using only one server due to additional
data transmission, the parallel computing allows iterations
overlapping with each other, thus the neural network can be
trained faster.

B. Experimental results

In this section, experiments are conducted to validate the
effectiveness of IA mechanism to strengthen our motivation
of TA service placement. The MNIST and CIFARI0 [62]
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are used as the datasets for image classification with 10
classes. Personal computers equipped with Intel(R) Core(TM)
17-8565U CPU @ 1.80GHz core are used as the edge servers
with 100 Mbp wireless bandwidth capacity. The classic neural
networks of LeNet5 [63] and ResNet34 [64] are applied
for MNIST and CIFARI10, respectively. Other configurations
for SGD can refer to [65]. We divide ResNet34 into two
components, each of which has three layers. The data size
that is transmitted between the two components is 4,194,304
parameters, which is equivalent to 134,217,728 bits. Using (4),
the communication time between two components is 0.2s.

The assignment results of the two services are as in Fig. 12,
where “SG” means each services is assigned to a single server,
“SM” indicates two services are assigned to the same server
simultaneously and “SP” represents the case when different
components of a service (CIFARIO in our experiment) is
assigned to different servers.

The experimental results are shown in Figs. 14 - 17, where
the training loss and the test accuracy (i.e., the ratio of success-
ful prediction using the trained neural network on a separated
test dataset) are shown. Comparing the cases in Fig. 12 (a)
and (b), both MNIST_SG and CIFAR10_SG achieve better
loss and accuracy than MNIST_SM and CIFAR10_SM. For
the cases in Fig. 12 (¢) and (d), it can be observed that
CIFAR10_SP outperforms CIFAR10_SG, reflecting the effec-
tiveness of parallel computing.

The TA mechanism tends to assign services or components
in a service to different edge servers to reduce their interfer-
ence, that is, the IA mechanism prefers the assignment results
of (b) and (d) to (a) and (c) in Fig. 12. The induced load
balancing and parallel computing is effective for improving the
performance of services (i.e., loss and accuracy). Therefore,
the investigation of IA mechanism is not trivial in practical.

VIII. CONCLUSION

In this paper, we have investigated the interference-aware
online multi-component service placement in edge cloud net-
works. The services are modeled using trees and the total
executing delay of services is formulated based on M/G/1 and
M/M/1 queuing systems. By analyzing the delay formulation,
the TA residual capacities of edge servers, wireless links,
and physical paths are derived theoretically. We prove that
the multi-component service placement problem is NP-hard,
thus the ACO is used to obtain the near-optimal solution.
The component ranking based on level traversal and the
interference-aware dynamic pruning are proposed for ACO to
achieve faster convergence and avoid the interference among
services. The simulation results show that the proposed al-
gorithm outperform comparative approaches in terms of the
convergence time and the acceptance ratio of services. In
addition, the experiments on Al application of multi-class
classification is conducted to further validate the effectiveness
of the interference-aware mechanism. In the future, more
experiments on a larger range of Al applications will be
conducted using our proposed algorithms.
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APPENDIX
A. Proof of Lemma 1

Proof. We use a special case where all services in K are
homogeneous and each has one component with computation
resource requirement of ¢ for the proof. The arrival rate and
delay requirement of every service are 77 and d, respectively.
Thus, P1 becomes
P2
min U (a)

s.t.

(7), (1), (13), (14)

Assume each edge server can hold at most « services in order

to satisfy the resource capacity (11) and delay co(nstraint (13),
: 1 c = 1 +1)c

that is, i T % < d .< o= + KC” 07V”,€

N. The problem P2 is equivalent to a SAT problem with

IV K|’_C|—|1 +2|K| Boolean formulas as (29) - (31), where

|| denote the number of elements in the set.

ar1n V- Vag 1., Vn €N, all different k,--- k' € K,

k+1 items
(29)
aga1Vagi2 Ve Vagy v, vk € K, (30)
A (@ham Vagin),Vk € K,n,n' € N. (31
Formula (29) taking 1 ensures that any x + 1 ser-

vices/components should not be placed onto the same edge
node to satisfy the delay requirements (constraint (13)) for all
binary a1, (constraint (14)) where @y ;,, flips the value of

k=1,

Kl=2,

N|=2

Qg Vs GV Gy, (16)

\
a 2
11,
AV s Gy Vg, a7 \\ AN

Gy V Gy, Gy Vi, (18)

(©) (d)

Fig. 18: Diagram of transforming SAT into MEWC. (a) Boolean formulas of
placing two services on two physical nodes with k = 1; (b) Auxiliary graph
A; () Two MEWCs of A, each clique is a fully-connected graph; (d) Two
placement results extracted form MEWCs

a,i,n. Formula (30) taking 1 specifies each component should
be placed to at least one edge node and (31) guarantees any
pair of edge nodes can not hold a component at the same
time. Thus, (30) and (31) guarantee the unsplittable component
placement, that is (7) in P2. Consequently, endowing the
outputs of Boolean formulas (29) - (31) with all 1 is equivalent
to the constraints in P2. Thus, Lemma 1 is proved. O

B. Proof of Lemma 2

Proof. Any SAT problem can be transformed into MEWC
problem, as exampled in Fig. 18, through constructing an
auxiliary graph A as follows:

1) Transform each unit (i.e., x and ¥) in SAT into a vertex
in A. The units with OR relation in SAT are set into a
subset in A;

2) Connect vertices that locate in different subsets without
conflict, i.e., x and T should not be connected;

3) Set the weights of edges that connect different units
(units with and without the NOT operation are the same)
with the total utility of the end nodes.

4) Find the MEWC of A.

C. Proof of Theorem 1

Proof. Based on Lemma 2 and the fact that the MEWC
problem is NP-hard [66], [67], the problem P1 is also NP-
hard. L]

D. Proof of Theorem 2
Proof. From (20), we have

—_— L
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Finally, we have
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2Fn +

With the definitions of ¢; > 0 and (2, > 0, we obtain the
quadratic inequality,

@)’ > 0. (32)

(l/"ﬁn7n/ -

It has a positive discriminant when the equality holds. There-
fore,

Lo >& +\/0, ifvk > &
{ Zznn < Qﬁl i— \/Ql’ ¥f V%n’n z dil? (33)
nnn/ = *l LWV =%
From (21), we have
R — N F
vl o< 2 (34)
Ko "

Thus, (20) and (21) are transformed into (33) and (34).
Taking insights into @;, {2; and (R, — N\ F) /7, we have
D+ /(2 —

)\ZF | X2R}
=1 I'*>0 (35
1+ ) + (35)
and
R — N F | X2R}
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where I} := &; — AZFZ(”";’) Z—&-X:Ifl—Rlz;]\lF.
Combining (35) and (36) gives
Ry — N\ F
-V < % <P+ (37)
Therefore, we can deplct the picture of 1/ ‘. as in Fig. 19.
Finally, we have v}, = max {&; — v/ l,O} O

E. Proof of Theorem 3
Proof. From (24) we have
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Fig. 19: The diagram of 1/7] _—
which gives
Cn—An N
nn (5 +w +7)Vn,n+
C (e +wn ) (Cr—An ) S
n n

Through algebra operations, we have
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It follows

The above is equivalent to

(vin =

@,)° > 0,

for ¢, > 0 and 2, > 0. The solution of the quadratic
inequality is ,

nzgﬁ +02,, ifvY > &,
{ 7\7 — /82, if VTJ\” < P,,. (38)
From (11), we have
Cn—A
yY, < Zn (39)
n
Furthermore, for (38) and (39) we can also obtain
— VN < "< Py 42, (40)
using a similar way as (37).
Based on above, the theorem is proved. O



